--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-mongolian-colab-CV16.0 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - type: wer value: 0.965662968832541 name: Wer --- # w2v-bert-2.0-mongolian-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6984 - Wer: 0.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.4128 | 1.9763 | 500 | 3.2537 | 1.0 | | 1.7038 | 3.9526 | 1000 | 1.5989 | 1.0 | | 0.722 | 5.9289 | 1500 | 0.9174 | 0.9878 | | 0.4558 | 7.9051 | 2000 | 0.7443 | 0.9746 | | 0.3257 | 9.8814 | 2500 | 0.6984 | 0.9657 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.21.1