qianhuiwu commited on
Commit
c88e75e
·
verified ·
1 Parent(s): 91ac86e

Upload model files.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|diff_marker|>": 151658,
5
+ "<|endoftext|>": 151643,
6
+ "<|im_end|>": 151645,
7
+ "<|im_start|>": 151644,
8
+ "<|image_pad|>": 151655,
9
+ "<|object_ref_end|>": 151647,
10
+ "<|object_ref_start|>": 151646,
11
+ "<|pointer_end|>": 151660,
12
+ "<|pointer_pad|>": 151661,
13
+ "<|pointer_start|>": 151659,
14
+ "<|quad_end|>": 151651,
15
+ "<|quad_start|>": 151650,
16
+ "<|recipient|>": 151657,
17
+ "<|video_pad|>": 151656,
18
+ "<|vision_end|>": 151653,
19
+ "<|vision_pad|>": 151654,
20
+ "<|vision_start|>": 151652
21
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/kanzhi/checkpoints/aguvis/Uground_GUIEnv_GUIAct_AMEX_AC_WaveUI_stage0_bs128/qwen2vl7binstruct_stage1_ep1_lr0.0001_bs1_mp5720064_mml24576_ufallFalse_ufpnTrue_uflmFalse_ufbmFalse_ufntTrue_ufvFalse_ploss1.0_lmloss-1.0_Uground_GUIEnv_GUIAct_AMEX_AC_WaveUI_stage0_bs128",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGenerationWithPointer"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": [
9
+ 151658
10
+ ],
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3584,
13
+ "image_token_id": 151655,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 18944,
16
+ "max_position_embeddings": 32768,
17
+ "max_window_layers": 28,
18
+ "model_type": "qwen2_vl",
19
+ "num_attention_heads": 28,
20
+ "num_hidden_layers": 28,
21
+ "num_key_value_heads": 4,
22
+ "pointer_end_token_id": 151660,
23
+ "pointer_pad_token_id": 151661,
24
+ "pointer_start_token_id": 151659,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": {
27
+ "mrope_section": [
28
+ 16,
29
+ 24,
30
+ 24
31
+ ],
32
+ "rope_type": "default",
33
+ "type": "default"
34
+ },
35
+ "rope_theta": 1000000.0,
36
+ "sliding_window": 32768,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.47.1",
40
+ "use_cache": true,
41
+ "use_sliding_window": false,
42
+ "video_token_id": 151656,
43
+ "vision_config": {
44
+ "in_chans": 3,
45
+ "model_type": "qwen2_vl",
46
+ "spatial_patch_size": 14
47
+ },
48
+ "vision_end_token_id": 151653,
49
+ "vision_start_token_id": 151652,
50
+ "vision_token_id": 151654,
51
+ "vocab_size": 151662
52
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151658
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.01,
10
+ "top_k": 1,
11
+ "top_p": 0.001,
12
+ "transformers_version": "4.47.1"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e36209a492109e3b804e8e5f5d00359520a4937074c87e24a7b581cc9f3dc4e
3
+ size 4963778408
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee749d853aed7ce852cc1902451090e85bf55d7d73d2a5059fc597a2763f393f
3
+ size 4991495816
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:867e408021b4b4e337c7d1fc307e7a5fe2f412ac48f90cc7750a6e0f78e1ceac
3
+ size 4932751040
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db9876fa869fc09f24175ee5e4fe519b53dfa33c577848ba9087be39da17e2a8
3
+ size 1894637160
model.safetensors.index.json ADDED
@@ -0,0 +1,751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16782580736
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "multi_patch_pointer_head.layer_norm.bias": "model-00004-of-00004.safetensors",
346
+ "multi_patch_pointer_head.layer_norm.weight": "model-00004-of-00004.safetensors",
347
+ "multi_patch_pointer_head.projection_dec.0.bias": "model-00004-of-00004.safetensors",
348
+ "multi_patch_pointer_head.projection_dec.0.weight": "model-00004-of-00004.safetensors",
349
+ "multi_patch_pointer_head.projection_dec.2.bias": "model-00004-of-00004.safetensors",
350
+ "multi_patch_pointer_head.projection_dec.2.weight": "model-00004-of-00004.safetensors",
351
+ "multi_patch_pointer_head.projection_enc.0.bias": "model-00004-of-00004.safetensors",
352
+ "multi_patch_pointer_head.projection_enc.0.weight": "model-00004-of-00004.safetensors",
353
+ "multi_patch_pointer_head.projection_enc.2.bias": "model-00004-of-00004.safetensors",
354
+ "multi_patch_pointer_head.projection_enc.2.weight": "model-00004-of-00004.safetensors",
355
+ "multi_patch_pointer_head.self_attention.in_proj_bias": "model-00004-of-00004.safetensors",
356
+ "multi_patch_pointer_head.self_attention.in_proj_weight": "model-00004-of-00004.safetensors",
357
+ "multi_patch_pointer_head.self_attention.out_proj.bias": "model-00004-of-00004.safetensors",
358
+ "multi_patch_pointer_head.self_attention.out_proj.weight": "model-00004-of-00004.safetensors",
359
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
729
+ "visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
730
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
731
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
732
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
733
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
734
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
735
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
736
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
737
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
738
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
739
+ "visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
740
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
741
+ "visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
742
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
743
+ "visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
744
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
745
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
746
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
747
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
748
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
749
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
750
+ }
751
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 5720064,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 5720064,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|recipient|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|diff_marker|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<|pointer_start|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ {
25
+ "content": "<|pointer_end|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ {
32
+ "content": "<|pointer_pad|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ ],
39
+ "eos_token": "<|diff_marker|>",
40
+ "pad_token": {
41
+ "content": "<|endoftext|>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ca6580f6054f3fd7a7bd12c9a6319757c8e6f1106844b6fc595aebca7e9c9dd
3
+ size 11421331
tokenizer_config.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<|recipient|>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "151658": {
125
+ "content": "<|diff_marker|>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "151659": {
133
+ "content": "<|pointer_start|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "151660": {
141
+ "content": "<|pointer_end|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "151661": {
149
+ "content": "<|pointer_pad|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ }
156
+ },
157
+ "additional_special_tokens": [
158
+ "<|recipient|>",
159
+ "<|diff_marker|>",
160
+ "<|pointer_start|>",
161
+ "<|pointer_end|>",
162
+ "<|pointer_pad|>"
163
+ ],
164
+ "bos_token": null,
165
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
166
+ "clean_up_tokenization_spaces": false,
167
+ "eos_token": "<|diff_marker|>",
168
+ "errors": "replace",
169
+ "extra_special_tokens": {},
170
+ "model_max_length": 24576,
171
+ "pad_token": "<|endoftext|>",
172
+ "padding_side": "right",
173
+ "processor_class": "Qwen2VLProcessor",
174
+ "split_special_tokens": false,
175
+ "tokenizer_class": "Qwen2Tokenizer",
176
+ "unk_token": null
177
+ }
trainer_state.json ADDED
@@ -0,0 +1,3472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9999235220638846,
5
+ "eval_steps": 500,
6
+ "global_step": 4903,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0020394116297448184,
13
+ "grad_norm": 416.0261542171565,
14
+ "learning_rate": 3.378378378378379e-07,
15
+ "loss": 73.7906,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.004078823259489637,
20
+ "grad_norm": 176.44597487763102,
21
+ "learning_rate": 6.756756756756758e-07,
22
+ "loss": 59.368,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.006118234889234456,
27
+ "grad_norm": 86.02408883452614,
28
+ "learning_rate": 1.0135135135135136e-06,
29
+ "loss": 43.9054,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.008157646518979274,
34
+ "grad_norm": 48.78099953842141,
35
+ "learning_rate": 1.3513513513513515e-06,
36
+ "loss": 37.344,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.010197058148724092,
41
+ "grad_norm": 59.00532328533055,
42
+ "learning_rate": 1.6891891891891894e-06,
43
+ "loss": 35.4945,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.012236469778468912,
48
+ "grad_norm": 42.96551818056488,
49
+ "learning_rate": 2.0270270270270273e-06,
50
+ "loss": 34.506,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.01427588140821373,
55
+ "grad_norm": 31.65537424852591,
56
+ "learning_rate": 2.364864864864865e-06,
57
+ "loss": 33.6203,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.016315293037958548,
62
+ "grad_norm": 54.92033486362346,
63
+ "learning_rate": 2.702702702702703e-06,
64
+ "loss": 33.1313,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.018354704667703368,
69
+ "grad_norm": 40.46176095549042,
70
+ "learning_rate": 3.040540540540541e-06,
71
+ "loss": 32.157,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.020394116297448184,
76
+ "grad_norm": 61.273325432745324,
77
+ "learning_rate": 3.3783783783783788e-06,
78
+ "loss": 31.0497,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.022433527927193005,
83
+ "grad_norm": 64.3759451606204,
84
+ "learning_rate": 3.7162162162162162e-06,
85
+ "loss": 29.0966,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.024472939556937825,
90
+ "grad_norm": 49.81979980897721,
91
+ "learning_rate": 4.0540540540540545e-06,
92
+ "loss": 25.7664,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.02651235118668264,
97
+ "grad_norm": 53.97034325712405,
98
+ "learning_rate": 4.391891891891892e-06,
99
+ "loss": 22.6339,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.02855176281642746,
104
+ "grad_norm": 45.22248833674121,
105
+ "learning_rate": 4.72972972972973e-06,
106
+ "loss": 18.4785,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.03059117444617228,
111
+ "grad_norm": 41.55548956071476,
112
+ "learning_rate": 4.999997817427676e-06,
113
+ "loss": 14.245,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.032630586075917095,
118
+ "grad_norm": 41.40754232941594,
119
+ "learning_rate": 4.999921427796456e-06,
120
+ "loss": 10.8795,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.03466999770566192,
125
+ "grad_norm": 25.881466706955045,
126
+ "learning_rate": 4.99973591335987e-06,
127
+ "loss": 8.5891,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.036709409335406736,
132
+ "grad_norm": 25.894728638081446,
133
+ "learning_rate": 4.999441282215864e-06,
134
+ "loss": 7.8307,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.03874882096515155,
139
+ "grad_norm": 28.336080933989287,
140
+ "learning_rate": 4.999037547225467e-06,
141
+ "loss": 7.4253,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.04078823259489637,
146
+ "grad_norm": 29.417876548615816,
147
+ "learning_rate": 4.998524726012237e-06,
148
+ "loss": 7.3717,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.04282764422464119,
153
+ "grad_norm": 26.239293765079168,
154
+ "learning_rate": 4.99790284096148e-06,
155
+ "loss": 7.2478,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.04486705585438601,
160
+ "grad_norm": 14.542416285761892,
161
+ "learning_rate": 4.997171919219285e-06,
162
+ "loss": 6.9808,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.046906467484130826,
167
+ "grad_norm": 21.57349128905767,
168
+ "learning_rate": 4.996331992691331e-06,
169
+ "loss": 6.8236,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.04894587911387565,
174
+ "grad_norm": 16.18485452820067,
175
+ "learning_rate": 4.9953830980414995e-06,
176
+ "loss": 6.5693,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.050985290743620466,
181
+ "grad_norm": 17.24603864401605,
182
+ "learning_rate": 4.994325276690269e-06,
183
+ "loss": 6.4391,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.05302470237336528,
188
+ "grad_norm": 17.815416004459667,
189
+ "learning_rate": 4.99315857481291e-06,
190
+ "loss": 6.6979,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.0550641140031101,
195
+ "grad_norm": 18.11307456753595,
196
+ "learning_rate": 4.991883043337469e-06,
197
+ "loss": 7.0256,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.05710352563285492,
202
+ "grad_norm": 14.094011405950782,
203
+ "learning_rate": 4.990498737942546e-06,
204
+ "loss": 6.8038,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.05914293726259974,
209
+ "grad_norm": 17.08019015337673,
210
+ "learning_rate": 4.9890057190548624e-06,
211
+ "loss": 6.5316,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.06118234889234456,
216
+ "grad_norm": 14.037189749911553,
217
+ "learning_rate": 4.987404051846626e-06,
218
+ "loss": 6.6865,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.06322176052208937,
223
+ "grad_norm": 16.524361976050557,
224
+ "learning_rate": 4.985693806232682e-06,
225
+ "loss": 6.6122,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.06526117215183419,
230
+ "grad_norm": 14.482343818627136,
231
+ "learning_rate": 4.983875056867465e-06,
232
+ "loss": 6.7456,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.06730058378157902,
237
+ "grad_norm": 15.112376227157249,
238
+ "learning_rate": 4.981947883141738e-06,
239
+ "loss": 6.7078,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.06933999541132384,
244
+ "grad_norm": 10.698156963129385,
245
+ "learning_rate": 4.979912369179129e-06,
246
+ "loss": 6.2382,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.07137940704106865,
251
+ "grad_norm": 11.770671514851704,
252
+ "learning_rate": 4.977768603832454e-06,
253
+ "loss": 6.5136,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.07341881867081347,
258
+ "grad_norm": 10.786322429347136,
259
+ "learning_rate": 4.975516680679847e-06,
260
+ "loss": 6.5095,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.07545823030055829,
265
+ "grad_norm": 9.074114726707114,
266
+ "learning_rate": 4.973156698020667e-06,
267
+ "loss": 6.4467,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.0774976419303031,
272
+ "grad_norm": 12.61967333137717,
273
+ "learning_rate": 4.970688758871211e-06,
274
+ "loss": 6.3277,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.07953705356004792,
279
+ "grad_norm": 5.904025228887194,
280
+ "learning_rate": 4.968112970960217e-06,
281
+ "loss": 6.2881,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.08157646518979274,
286
+ "grad_norm": 15.099418681801705,
287
+ "learning_rate": 4.96542944672416e-06,
288
+ "loss": 6.405,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.08361587681953757,
293
+ "grad_norm": 11.908714596527965,
294
+ "learning_rate": 4.962638303302345e-06,
295
+ "loss": 6.4003,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.08565528844928239,
300
+ "grad_norm": 13.433001486568871,
301
+ "learning_rate": 4.959739662531796e-06,
302
+ "loss": 6.1106,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.0876947000790272,
307
+ "grad_norm": 11.497300438164624,
308
+ "learning_rate": 4.956733650941931e-06,
309
+ "loss": 5.9704,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.08973411170877202,
314
+ "grad_norm": 8.414104614793995,
315
+ "learning_rate": 4.953620399749049e-06,
316
+ "loss": 6.1982,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.09177352333851684,
321
+ "grad_norm": 9.918891815515376,
322
+ "learning_rate": 4.950400044850591e-06,
323
+ "loss": 6.2846,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.09381293496826165,
328
+ "grad_norm": 8.216763124460652,
329
+ "learning_rate": 4.947072726819216e-06,
330
+ "loss": 6.2039,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.09585234659800647,
335
+ "grad_norm": 11.442657226474541,
336
+ "learning_rate": 4.943638590896663e-06,
337
+ "loss": 6.148,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.0978917582277513,
342
+ "grad_norm": 10.7989783448724,
343
+ "learning_rate": 4.940097786987408e-06,
344
+ "loss": 6.067,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.09993116985749612,
349
+ "grad_norm": 7.66274546063033,
350
+ "learning_rate": 4.936450469652123e-06,
351
+ "loss": 6.0997,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.10197058148724093,
356
+ "grad_norm": 11.155574725614574,
357
+ "learning_rate": 4.93269679810093e-06,
358
+ "loss": 6.5548,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.10400999311698575,
363
+ "grad_norm": 6.583246362480005,
364
+ "learning_rate": 4.928836936186451e-06,
365
+ "loss": 6.0022,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.10604940474673057,
370
+ "grad_norm": 7.041533689745258,
371
+ "learning_rate": 4.924871052396652e-06,
372
+ "loss": 5.9554,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.10808881637647538,
377
+ "grad_norm": 9.007162906891262,
378
+ "learning_rate": 4.920799319847492e-06,
379
+ "loss": 5.8155,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.1101282280062202,
384
+ "grad_norm": 7.851973912778234,
385
+ "learning_rate": 4.916621916275368e-06,
386
+ "loss": 6.0246,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.11216763963596503,
391
+ "grad_norm": 11.497046086141061,
392
+ "learning_rate": 4.91233902402935e-06,
393
+ "loss": 6.3948,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.11420705126570985,
398
+ "grad_norm": 11.5824916010593,
399
+ "learning_rate": 4.9079508300632285e-06,
400
+ "loss": 6.1677,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.11624646289545466,
405
+ "grad_norm": 8.291991010048283,
406
+ "learning_rate": 4.903457525927346e-06,
407
+ "loss": 5.8365,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.11828587452519948,
412
+ "grad_norm": 10.643398932054943,
413
+ "learning_rate": 4.898859307760244e-06,
414
+ "loss": 5.8869,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.1203252861549443,
419
+ "grad_norm": 7.296026077222149,
420
+ "learning_rate": 4.894156376280097e-06,
421
+ "loss": 6.1545,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.12236469778468911,
426
+ "grad_norm": 8.126364280765701,
427
+ "learning_rate": 4.889348936775949e-06,
428
+ "loss": 6.0321,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.12440410941443393,
433
+ "grad_norm": 8.519085629561392,
434
+ "learning_rate": 4.884437199098755e-06,
435
+ "loss": 5.9508,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.12644352104417875,
440
+ "grad_norm": 7.392519482936644,
441
+ "learning_rate": 4.879421377652221e-06,
442
+ "loss": 5.8742,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.12848293267392358,
447
+ "grad_norm": 7.757565156734196,
448
+ "learning_rate": 4.874301691383444e-06,
449
+ "loss": 5.8579,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.13052234430366838,
454
+ "grad_norm": 5.593766231869827,
455
+ "learning_rate": 4.8690783637733556e-06,
456
+ "loss": 5.5822,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.1325617559334132,
461
+ "grad_norm": 8.876625978244254,
462
+ "learning_rate": 4.863751622826963e-06,
463
+ "loss": 5.9153,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.13460116756315804,
468
+ "grad_norm": 9.33367328824495,
469
+ "learning_rate": 4.858321701063404e-06,
470
+ "loss": 5.7982,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.13664057919290284,
475
+ "grad_norm": 6.988379291475624,
476
+ "learning_rate": 4.852788835505789e-06,
477
+ "loss": 5.4791,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.13867999082264768,
482
+ "grad_norm": 7.587497929148608,
483
+ "learning_rate": 4.847153267670861e-06,
484
+ "loss": 5.6539,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.14071940245239248,
489
+ "grad_norm": 4.534723143566571,
490
+ "learning_rate": 4.841415243558446e-06,
491
+ "loss": 5.4806,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.1427588140821373,
496
+ "grad_norm": 9.721969800057037,
497
+ "learning_rate": 4.835575013640724e-06,
498
+ "loss": 5.8345,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.1447982257118821,
503
+ "grad_norm": 10.52209667619718,
504
+ "learning_rate": 4.8296328328512876e-06,
505
+ "loss": 5.7927,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.14683763734162694,
510
+ "grad_norm": 8.761127944716362,
511
+ "learning_rate": 4.823588960574019e-06,
512
+ "loss": 5.6675,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.14887704897137177,
517
+ "grad_norm": 7.302359459744512,
518
+ "learning_rate": 4.817443660631762e-06,
519
+ "loss": 5.6315,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.15091646060111658,
524
+ "grad_norm": 6.275383790159637,
525
+ "learning_rate": 4.811197201274813e-06,
526
+ "loss": 5.4671,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.1529558722308614,
531
+ "grad_norm": 10.551322104997928,
532
+ "learning_rate": 4.804849855169206e-06,
533
+ "loss": 5.6134,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.1549952838606062,
538
+ "grad_norm": 7.584661880579045,
539
+ "learning_rate": 4.798401899384813e-06,
540
+ "loss": 5.9102,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.15703469549035104,
545
+ "grad_norm": 4.793753789486284,
546
+ "learning_rate": 4.791853615383246e-06,
547
+ "loss": 5.4862,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.15907410712009584,
552
+ "grad_norm": 10.242198429563965,
553
+ "learning_rate": 4.785205289005576e-06,
554
+ "loss": 5.4147,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.16111351874984067,
559
+ "grad_norm": 6.632351115695969,
560
+ "learning_rate": 4.7784572104598555e-06,
561
+ "loss": 5.6655,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.16315293037958548,
566
+ "grad_norm": 8.620608149299821,
567
+ "learning_rate": 4.771609674308443e-06,
568
+ "loss": 5.4152,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.1651923420093303,
573
+ "grad_norm": 7.554055633248649,
574
+ "learning_rate": 4.764662979455153e-06,
575
+ "loss": 5.4569,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.16723175363907514,
580
+ "grad_norm": 7.374395786991857,
581
+ "learning_rate": 4.757617429132205e-06,
582
+ "loss": 5.6693,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.16927116526881994,
587
+ "grad_norm": 7.778658999668707,
588
+ "learning_rate": 4.7504733308869885e-06,
589
+ "loss": 5.3745,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.17131057689856477,
594
+ "grad_norm": 7.802265783668195,
595
+ "learning_rate": 4.743230996568636e-06,
596
+ "loss": 5.6156,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.17334998852830957,
601
+ "grad_norm": 6.023468248280255,
602
+ "learning_rate": 4.735890742314414e-06,
603
+ "loss": 5.4607,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.1753894001580544,
608
+ "grad_norm": 10.949757092686623,
609
+ "learning_rate": 4.728452888535917e-06,
610
+ "loss": 5.5242,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.1774288117877992,
615
+ "grad_norm": 8.317892545044202,
616
+ "learning_rate": 4.72091775990509e-06,
617
+ "loss": 5.4653,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.17946822341754404,
622
+ "grad_norm": 6.757147922173718,
623
+ "learning_rate": 4.713285685340047e-06,
624
+ "loss": 5.8241,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.18150763504728887,
629
+ "grad_norm": 6.363739805456836,
630
+ "learning_rate": 4.70555699799072e-06,
631
+ "loss": 5.4058,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.18354704667703367,
636
+ "grad_norm": 10.24562868217905,
637
+ "learning_rate": 4.697732035224313e-06,
638
+ "loss": 5.4712,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.1855864583067785,
643
+ "grad_norm": 8.518144636408193,
644
+ "learning_rate": 4.689811138610576e-06,
645
+ "loss": 5.4263,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.1876258699365233,
650
+ "grad_norm": 7.395829764767208,
651
+ "learning_rate": 4.681794653906897e-06,
652
+ "loss": 5.2392,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.18966528156626813,
657
+ "grad_norm": 7.494096023177462,
658
+ "learning_rate": 4.673682931043206e-06,
659
+ "loss": 5.7766,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.19170469319601294,
664
+ "grad_norm": 5.4911466037050145,
665
+ "learning_rate": 4.665476324106705e-06,
666
+ "loss": 5.4307,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.19374410482575777,
671
+ "grad_norm": 7.523992837258927,
672
+ "learning_rate": 4.657175191326405e-06,
673
+ "loss": 5.2756,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.1957835164555026,
678
+ "grad_norm": 7.885343320180726,
679
+ "learning_rate": 4.648779895057495e-06,
680
+ "loss": 5.4366,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.1978229280852474,
685
+ "grad_norm": 4.885451371326598,
686
+ "learning_rate": 4.64029080176552e-06,
687
+ "loss": 5.3246,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.19986233971499223,
692
+ "grad_norm": 8.50397433436197,
693
+ "learning_rate": 4.631708282010389e-06,
694
+ "loss": 5.5952,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.20190175134473703,
699
+ "grad_norm": 7.0206835314562195,
700
+ "learning_rate": 4.6230327104301935e-06,
701
+ "loss": 5.2864,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.20394116297448187,
706
+ "grad_norm": 6.969378735928141,
707
+ "learning_rate": 4.614264465724862e-06,
708
+ "loss": 5.2238,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.20598057460422667,
713
+ "grad_norm": 8.080868706627124,
714
+ "learning_rate": 4.605403930639621e-06,
715
+ "loss": 5.3855,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.2080199862339715,
720
+ "grad_norm": 5.944525382159798,
721
+ "learning_rate": 4.5964514919482935e-06,
722
+ "loss": 5.4129,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.21005939786371633,
727
+ "grad_norm": 5.520005113209886,
728
+ "learning_rate": 4.587407540436414e-06,
729
+ "loss": 5.4312,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.21209880949346113,
734
+ "grad_norm": 4.896352945576618,
735
+ "learning_rate": 4.578272470884169e-06,
736
+ "loss": 5.312,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.21413822112320596,
741
+ "grad_norm": 7.324460281537905,
742
+ "learning_rate": 4.569046682049164e-06,
743
+ "loss": 5.356,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.21617763275295077,
748
+ "grad_norm": 5.713020075072778,
749
+ "learning_rate": 4.559730576649023e-06,
750
+ "loss": 5.2835,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.2182170443826956,
755
+ "grad_norm": 4.649247125372443,
756
+ "learning_rate": 4.5503245613438004e-06,
757
+ "loss": 5.2421,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.2202564560124404,
762
+ "grad_norm": 7.7755489393380905,
763
+ "learning_rate": 4.540829046718238e-06,
764
+ "loss": 5.4405,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.22229586764218523,
769
+ "grad_norm": 8.143008411892646,
770
+ "learning_rate": 4.531244447263835e-06,
771
+ "loss": 4.9708,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.22433527927193006,
776
+ "grad_norm": 10.474648698876116,
777
+ "learning_rate": 4.521571181360762e-06,
778
+ "loss": 5.2158,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.22637469090167486,
783
+ "grad_norm": 5.6615222624327215,
784
+ "learning_rate": 4.5118096712595925e-06,
785
+ "loss": 5.2773,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.2284141025314197,
790
+ "grad_norm": 5.546903591037121,
791
+ "learning_rate": 4.501960343062875e-06,
792
+ "loss": 5.2797,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.2304535141611645,
797
+ "grad_norm": 6.483847976431606,
798
+ "learning_rate": 4.492023626706531e-06,
799
+ "loss": 5.2986,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.23249292579090933,
804
+ "grad_norm": 5.661938295947555,
805
+ "learning_rate": 4.481999955941088e-06,
806
+ "loss": 5.0571,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.23453233742065413,
811
+ "grad_norm": 7.072541427396651,
812
+ "learning_rate": 4.4718897683127445e-06,
813
+ "loss": 5.1104,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.23657174905039896,
818
+ "grad_norm": 16.98201550221037,
819
+ "learning_rate": 4.4616935051442764e-06,
820
+ "loss": 5.3549,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.2386111606801438,
825
+ "grad_norm": 5.531136789877289,
826
+ "learning_rate": 4.451411611515764e-06,
827
+ "loss": 4.9175,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.2406505723098886,
832
+ "grad_norm": 6.473678682260914,
833
+ "learning_rate": 4.4410445362451696e-06,
834
+ "loss": 5.4938,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.24268998393963342,
839
+ "grad_norm": 3.568688453698588,
840
+ "learning_rate": 4.4305927318687445e-06,
841
+ "loss": 5.1755,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.24472939556937823,
846
+ "grad_norm": 9.957209893503183,
847
+ "learning_rate": 4.420056654621276e-06,
848
+ "loss": 5.0824,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.24676880719912306,
853
+ "grad_norm": 6.550501507797596,
854
+ "learning_rate": 4.409436764416167e-06,
855
+ "loss": 5.0426,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.24880821882886786,
860
+ "grad_norm": 6.096650424567716,
861
+ "learning_rate": 4.398733524825372e-06,
862
+ "loss": 5.1449,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.2508476304586127,
867
+ "grad_norm": 5.73645263262766,
868
+ "learning_rate": 4.3879474030591475e-06,
869
+ "loss": 5.3313,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.2528870420883575,
874
+ "grad_norm": 5.554280166145116,
875
+ "learning_rate": 4.377078869945666e-06,
876
+ "loss": 5.1019,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.25492645371810235,
881
+ "grad_norm": 8.19010821517748,
882
+ "learning_rate": 4.366128399910463e-06,
883
+ "loss": 5.3396,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.25696586534784716,
888
+ "grad_norm": 5.809513632072872,
889
+ "learning_rate": 4.355096470955726e-06,
890
+ "loss": 5.3416,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.25900527697759196,
895
+ "grad_norm": 5.140517143148237,
896
+ "learning_rate": 4.3439835646394314e-06,
897
+ "loss": 5.232,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.26104468860733676,
902
+ "grad_norm": 7.786748845574264,
903
+ "learning_rate": 4.332790166054318e-06,
904
+ "loss": 5.3942,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.2630841002370816,
909
+ "grad_norm": 5.34911882358093,
910
+ "learning_rate": 4.32151676380672e-06,
911
+ "loss": 4.9009,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.2651235118668264,
916
+ "grad_norm": 7.7837668085611025,
917
+ "learning_rate": 4.310163849995234e-06,
918
+ "loss": 5.2734,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.2671629234965712,
923
+ "grad_norm": 5.496423754443762,
924
+ "learning_rate": 4.2987319201892405e-06,
925
+ "loss": 5.1612,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.2692023351263161,
930
+ "grad_norm": 5.843994083100653,
931
+ "learning_rate": 4.287221473407267e-06,
932
+ "loss": 5.1954,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.2712417467560609,
937
+ "grad_norm": 7.265974737367786,
938
+ "learning_rate": 4.2756330120952125e-06,
939
+ "loss": 5.262,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.2732811583858057,
944
+ "grad_norm": 4.575773182227481,
945
+ "learning_rate": 4.263967042104408e-06,
946
+ "loss": 5.0813,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.2753205700155505,
951
+ "grad_norm": 8.171128477846313,
952
+ "learning_rate": 4.25222407266954e-06,
953
+ "loss": 5.128,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.27735998164529535,
958
+ "grad_norm": 7.220886668527826,
959
+ "learning_rate": 4.240404616386422e-06,
960
+ "loss": 5.1711,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.27939939327504015,
965
+ "grad_norm": 4.10147133416572,
966
+ "learning_rate": 4.228509189189614e-06,
967
+ "loss": 4.9569,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.28143880490478496,
972
+ "grad_norm": 7.066133692204384,
973
+ "learning_rate": 4.216538310329908e-06,
974
+ "loss": 5.0134,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.2834782165345298,
979
+ "grad_norm": 5.21162609757401,
980
+ "learning_rate": 4.204492502351656e-06,
981
+ "loss": 5.1385,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.2855176281642746,
986
+ "grad_norm": 12.133570883449654,
987
+ "learning_rate": 4.192372291069965e-06,
988
+ "loss": 5.3003,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.2875570397940194,
993
+ "grad_norm": 5.447844429023172,
994
+ "learning_rate": 4.180178205547741e-06,
995
+ "loss": 5.1224,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.2895964514237642,
1000
+ "grad_norm": 5.255219528432195,
1001
+ "learning_rate": 4.167910778072598e-06,
1002
+ "loss": 5.2098,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.2916358630535091,
1007
+ "grad_norm": 8.974121936568055,
1008
+ "learning_rate": 4.15557054413362e-06,
1009
+ "loss": 5.043,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.2936752746832539,
1014
+ "grad_norm": 5.127949434548276,
1015
+ "learning_rate": 4.143158042397986e-06,
1016
+ "loss": 4.7639,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.2957146863129987,
1021
+ "grad_norm": 6.7317777225167355,
1022
+ "learning_rate": 4.13067381468746e-06,
1023
+ "loss": 4.851,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.29775409794274355,
1028
+ "grad_norm": 7.362780361944449,
1029
+ "learning_rate": 4.118118405954737e-06,
1030
+ "loss": 5.0614,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.29979350957248835,
1035
+ "grad_norm": 6.269272741616841,
1036
+ "learning_rate": 4.105492364259656e-06,
1037
+ "loss": 5.0865,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.30183292120223315,
1042
+ "grad_norm": 9.08220881321792,
1043
+ "learning_rate": 4.0927962407452746e-06,
1044
+ "loss": 5.2192,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.30387233283197795,
1049
+ "grad_norm": 4.7165201076742385,
1050
+ "learning_rate": 4.080030589613815e-06,
1051
+ "loss": 4.781,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.3059117444617228,
1056
+ "grad_norm": 8.211182184786706,
1057
+ "learning_rate": 4.067195968102468e-06,
1058
+ "loss": 5.2033,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.3079511560914676,
1063
+ "grad_norm": 6.509747362409568,
1064
+ "learning_rate": 4.054292936459071e-06,
1065
+ "loss": 5.1884,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.3099905677212124,
1070
+ "grad_norm": 5.544500373765245,
1071
+ "learning_rate": 4.041322057917653e-06,
1072
+ "loss": 4.9485,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.3120299793509573,
1077
+ "grad_norm": 4.807701021398306,
1078
+ "learning_rate": 4.0282838986738485e-06,
1079
+ "loss": 4.8131,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.3140693909807021,
1084
+ "grad_norm": 3.233409705549431,
1085
+ "learning_rate": 4.015179027860178e-06,
1086
+ "loss": 4.7307,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.3161088026104469,
1091
+ "grad_norm": 6.77236682107715,
1092
+ "learning_rate": 4.002008017521212e-06,
1093
+ "loss": 4.7627,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.3181482142401917,
1098
+ "grad_norm": 6.020669488961124,
1099
+ "learning_rate": 3.9887714425885975e-06,
1100
+ "loss": 4.9527,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.32018762586993654,
1105
+ "grad_norm": 4.923860327213745,
1106
+ "learning_rate": 3.975469880855958e-06,
1107
+ "loss": 4.7287,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.32222703749968135,
1112
+ "grad_norm": 5.631284127525618,
1113
+ "learning_rate": 3.962103912953674e-06,
1114
+ "loss": 4.9252,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.32426644912942615,
1119
+ "grad_norm": 5.814788040501255,
1120
+ "learning_rate": 3.9486741223235445e-06,
1121
+ "loss": 5.1897,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.32630586075917095,
1126
+ "grad_norm": 5.508231515820795,
1127
+ "learning_rate": 3.935181095193308e-06,
1128
+ "loss": 5.0457,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.3283452723889158,
1133
+ "grad_norm": 5.4508146817265954,
1134
+ "learning_rate": 3.921625420551059e-06,
1135
+ "loss": 4.8422,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.3303846840186606,
1140
+ "grad_norm": 4.715200633768152,
1141
+ "learning_rate": 3.908007690119537e-06,
1142
+ "loss": 4.9572,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.3324240956484054,
1147
+ "grad_norm": 5.635074094088275,
1148
+ "learning_rate": 3.894328498330298e-06,
1149
+ "loss": 4.9342,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.3344635072781503,
1154
+ "grad_norm": 6.246219395266704,
1155
+ "learning_rate": 3.880588442297766e-06,
1156
+ "loss": 4.9741,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.3365029189078951,
1161
+ "grad_norm": 8.098590882244267,
1162
+ "learning_rate": 3.866788121793167e-06,
1163
+ "loss": 4.8886,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.3385423305376399,
1168
+ "grad_norm": 12.62629986891231,
1169
+ "learning_rate": 3.852928139218348e-06,
1170
+ "loss": 4.8273,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.3405817421673847,
1175
+ "grad_norm": 4.193982563974684,
1176
+ "learning_rate": 3.839009099579486e-06,
1177
+ "loss": 4.933,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.34262115379712954,
1182
+ "grad_norm": 5.632695469956019,
1183
+ "learning_rate": 3.825031610460672e-06,
1184
+ "loss": 4.6028,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.34466056542687434,
1189
+ "grad_norm": 3.989355667747194,
1190
+ "learning_rate": 3.8109962819973944e-06,
1191
+ "loss": 4.8633,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.34669997705661915,
1196
+ "grad_norm": 7.846817101081181,
1197
+ "learning_rate": 3.7969037268499025e-06,
1198
+ "loss": 4.9931,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.348739388686364,
1203
+ "grad_norm": 5.987919721991004,
1204
+ "learning_rate": 3.7827545601764653e-06,
1205
+ "loss": 4.7492,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.3507788003161088,
1210
+ "grad_norm": 4.985392387181365,
1211
+ "learning_rate": 3.768549399606518e-06,
1212
+ "loss": 4.7011,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.3528182119458536,
1217
+ "grad_norm": 6.5690265181699585,
1218
+ "learning_rate": 3.7542888652137025e-06,
1219
+ "loss": 4.7899,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.3548576235755984,
1224
+ "grad_norm": 5.920232383701147,
1225
+ "learning_rate": 3.7399735794887983e-06,
1226
+ "loss": 4.7349,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.35689703520534327,
1231
+ "grad_norm": 6.9773660448694965,
1232
+ "learning_rate": 3.7256041673125513e-06,
1233
+ "loss": 4.8938,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.3589364468350881,
1238
+ "grad_norm": 5.12271828837655,
1239
+ "learning_rate": 3.711181255928399e-06,
1240
+ "loss": 4.8061,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.3609758584648329,
1245
+ "grad_norm": 4.509496100857058,
1246
+ "learning_rate": 3.6967054749150872e-06,
1247
+ "loss": 4.6748,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.36301527009457774,
1252
+ "grad_norm": 7.295595382239702,
1253
+ "learning_rate": 3.6821774561591893e-06,
1254
+ "loss": 4.6083,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.36505468172432254,
1259
+ "grad_norm": 4.599385314907489,
1260
+ "learning_rate": 3.667597833827525e-06,
1261
+ "loss": 4.883,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.36709409335406734,
1266
+ "grad_norm": 6.629516043807281,
1267
+ "learning_rate": 3.6529672443394736e-06,
1268
+ "loss": 4.9669,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.36913350498381214,
1273
+ "grad_norm": 4.577184516232719,
1274
+ "learning_rate": 3.6382863263392017e-06,
1275
+ "loss": 4.7151,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.371172916613557,
1280
+ "grad_norm": 4.027378150905267,
1281
+ "learning_rate": 3.623555720667777e-06,
1282
+ "loss": 4.8222,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.3732123282433018,
1287
+ "grad_norm": 5.024565452729882,
1288
+ "learning_rate": 3.608776070335199e-06,
1289
+ "loss": 4.8064,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.3752517398730466,
1294
+ "grad_norm": 4.066513690833921,
1295
+ "learning_rate": 3.5939480204923304e-06,
1296
+ "loss": 4.9129,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.37729115150279147,
1301
+ "grad_norm": 6.837117278953486,
1302
+ "learning_rate": 3.5790722184027366e-06,
1303
+ "loss": 4.9833,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.37933056313253627,
1308
+ "grad_norm": 6.6515332693332425,
1309
+ "learning_rate": 3.564149313414427e-06,
1310
+ "loss": 4.6832,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.38136997476228107,
1315
+ "grad_norm": 4.476454101392343,
1316
+ "learning_rate": 3.549179956931517e-06,
1317
+ "loss": 4.8533,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.3834093863920259,
1322
+ "grad_norm": 5.956840861878673,
1323
+ "learning_rate": 3.5341648023857862e-06,
1324
+ "loss": 4.6882,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.38544879802177073,
1329
+ "grad_norm": 4.536553049777035,
1330
+ "learning_rate": 3.5191045052081635e-06,
1331
+ "loss": 4.5991,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.38748820965151554,
1336
+ "grad_norm": 5.54267535596638,
1337
+ "learning_rate": 3.503999722800108e-06,
1338
+ "loss": 4.6078,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.38952762128126034,
1343
+ "grad_norm": 4.50789482208058,
1344
+ "learning_rate": 3.4888511145049185e-06,
1345
+ "loss": 4.5409,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.3915670329110052,
1350
+ "grad_norm": 5.279561131733627,
1351
+ "learning_rate": 3.473659341578951e-06,
1352
+ "loss": 4.5287,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.39360644454075,
1357
+ "grad_norm": 7.116875907931303,
1358
+ "learning_rate": 3.4584250671627525e-06,
1359
+ "loss": 5.1626,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.3956458561704948,
1364
+ "grad_norm": 4.65457006318472,
1365
+ "learning_rate": 3.443148956252115e-06,
1366
+ "loss": 4.6972,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.3976852678002396,
1371
+ "grad_norm": 6.4616508610483425,
1372
+ "learning_rate": 3.427831675669048e-06,
1373
+ "loss": 4.7647,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.39972467942998446,
1378
+ "grad_norm": 5.316379863410858,
1379
+ "learning_rate": 3.4124738940326695e-06,
1380
+ "loss": 4.7853,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.40176409105972927,
1385
+ "grad_norm": 4.914166576095454,
1386
+ "learning_rate": 3.397076281730023e-06,
1387
+ "loss": 5.0169,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.40380350268947407,
1392
+ "grad_norm": 8.28351097157618,
1393
+ "learning_rate": 3.3816395108868104e-06,
1394
+ "loss": 4.7176,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.40584291431921893,
1399
+ "grad_norm": 4.575225455721527,
1400
+ "learning_rate": 3.3661642553380556e-06,
1401
+ "loss": 4.8754,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.40788232594896373,
1406
+ "grad_norm": 5.003204369305476,
1407
+ "learning_rate": 3.3506511905986894e-06,
1408
+ "loss": 4.7545,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.40992173757870853,
1413
+ "grad_norm": 4.5398048037729595,
1414
+ "learning_rate": 3.335100993834061e-06,
1415
+ "loss": 4.6255,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.41196114920845334,
1420
+ "grad_norm": 6.197545243168517,
1421
+ "learning_rate": 3.319514343830383e-06,
1422
+ "loss": 4.6299,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.4140005608381982,
1427
+ "grad_norm": 7.889241131506948,
1428
+ "learning_rate": 3.303891920965098e-06,
1429
+ "loss": 4.9074,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.416039972467943,
1434
+ "grad_norm": 5.074720773644666,
1435
+ "learning_rate": 3.288234407177181e-06,
1436
+ "loss": 4.573,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.4180793840976878,
1441
+ "grad_norm": 6.112647596280491,
1442
+ "learning_rate": 3.272542485937369e-06,
1443
+ "loss": 4.8592,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.42011879572743266,
1448
+ "grad_norm": 6.4517690477181695,
1449
+ "learning_rate": 3.256816842218331e-06,
1450
+ "loss": 4.5932,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.42215820735717746,
1455
+ "grad_norm": 8.247239836120627,
1456
+ "learning_rate": 3.241058162464767e-06,
1457
+ "loss": 4.5315,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.42419761898692226,
1462
+ "grad_norm": 5.52060883189122,
1463
+ "learning_rate": 3.225267134563439e-06,
1464
+ "loss": 4.8001,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.42623703061666707,
1469
+ "grad_norm": 3.859291794827778,
1470
+ "learning_rate": 3.209444447813149e-06,
1471
+ "loss": 4.7745,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.4282764422464119,
1476
+ "grad_norm": 6.789072712547568,
1477
+ "learning_rate": 3.193590792894651e-06,
1478
+ "loss": 4.6465,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.43031585387615673,
1483
+ "grad_norm": 6.921492613916647,
1484
+ "learning_rate": 3.1777068618404954e-06,
1485
+ "loss": 4.8625,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.43235526550590153,
1490
+ "grad_norm": 4.185712566739971,
1491
+ "learning_rate": 3.1617933480048297e-06,
1492
+ "loss": 4.7646,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.4343946771356464,
1497
+ "grad_norm": 5.908064336894023,
1498
+ "learning_rate": 3.145850946033125e-06,
1499
+ "loss": 4.7062,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.4364340887653912,
1504
+ "grad_norm": 4.9512422103962495,
1505
+ "learning_rate": 3.1298803518318565e-06,
1506
+ "loss": 4.6632,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.438473500395136,
1511
+ "grad_norm": 4.462025583947847,
1512
+ "learning_rate": 3.11388226253813e-06,
1513
+ "loss": 4.8027,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.4405129120248808,
1518
+ "grad_norm": 21.54345806183561,
1519
+ "learning_rate": 3.097857376489244e-06,
1520
+ "loss": 4.7234,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.44255232365462566,
1525
+ "grad_norm": 4.390377807291699,
1526
+ "learning_rate": 3.081806393192213e-06,
1527
+ "loss": 4.4904,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.44459173528437046,
1532
+ "grad_norm": 6.955688616513592,
1533
+ "learning_rate": 3.0657300132932276e-06,
1534
+ "loss": 4.6193,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.44663114691411526,
1539
+ "grad_norm": 5.926834469512367,
1540
+ "learning_rate": 3.049628938547075e-06,
1541
+ "loss": 4.5311,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.4486705585438601,
1546
+ "grad_norm": 6.810382975795083,
1547
+ "learning_rate": 3.0335038717865036e-06,
1548
+ "loss": 4.5441,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.4507099701736049,
1553
+ "grad_norm": 6.105828666147869,
1554
+ "learning_rate": 3.017355516891543e-06,
1555
+ "loss": 4.7737,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.4527493818033497,
1560
+ "grad_norm": 4.1649273404858524,
1561
+ "learning_rate": 3.001184578758783e-06,
1562
+ "loss": 4.7812,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.45478879343309453,
1567
+ "grad_norm": 5.4531825579013,
1568
+ "learning_rate": 2.9849917632705983e-06,
1569
+ "loss": 4.5843,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.4568282050628394,
1574
+ "grad_norm": 3.3490621444252247,
1575
+ "learning_rate": 2.9687777772643395e-06,
1576
+ "loss": 4.7987,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.4588676166925842,
1581
+ "grad_norm": 4.6539570043652985,
1582
+ "learning_rate": 2.9525433285014775e-06,
1583
+ "loss": 4.7358,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.460907028322329,
1588
+ "grad_norm": 5.481796267159919,
1589
+ "learning_rate": 2.936289125636709e-06,
1590
+ "loss": 4.5467,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.46294643995207385,
1595
+ "grad_norm": 4.96946248531744,
1596
+ "learning_rate": 2.9200158781870234e-06,
1597
+ "loss": 4.5166,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.46498585158181865,
1602
+ "grad_norm": 5.728062919250581,
1603
+ "learning_rate": 2.9037242965007306e-06,
1604
+ "loss": 4.4551,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.46702526321156346,
1609
+ "grad_norm": 5.557886147170241,
1610
+ "learning_rate": 2.8874150917264526e-06,
1611
+ "loss": 4.5336,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.46906467484130826,
1616
+ "grad_norm": 4.31588701471457,
1617
+ "learning_rate": 2.8710889757820836e-06,
1618
+ "loss": 4.7721,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.4711040864710531,
1623
+ "grad_norm": 5.845242353576575,
1624
+ "learning_rate": 2.8547466613237103e-06,
1625
+ "loss": 4.539,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.4731434981007979,
1630
+ "grad_norm": 4.457642166089704,
1631
+ "learning_rate": 2.8383888617145082e-06,
1632
+ "loss": 4.6368,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.4751829097305427,
1637
+ "grad_norm": 16.549355482991313,
1638
+ "learning_rate": 2.822016290993598e-06,
1639
+ "loss": 4.5717,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.4772223213602876,
1644
+ "grad_norm": 3.401945066769072,
1645
+ "learning_rate": 2.805629663844878e-06,
1646
+ "loss": 4.5665,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.4792617329900324,
1651
+ "grad_norm": 6.848905879632381,
1652
+ "learning_rate": 2.7892296955658283e-06,
1653
+ "loss": 4.6795,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.4813011446197772,
1658
+ "grad_norm": 4.697700609937575,
1659
+ "learning_rate": 2.7728171020362877e-06,
1660
+ "loss": 4.6161,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.483340556249522,
1665
+ "grad_norm": 4.222974275891583,
1666
+ "learning_rate": 2.756392599687202e-06,
1667
+ "loss": 4.8794,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.48537996787926685,
1672
+ "grad_norm": 4.801423370516862,
1673
+ "learning_rate": 2.739956905469353e-06,
1674
+ "loss": 4.7057,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.48741937950901165,
1679
+ "grad_norm": 7.011187588456055,
1680
+ "learning_rate": 2.7235107368220627e-06,
1681
+ "loss": 4.7853,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.48945879113875645,
1686
+ "grad_norm": 5.51967028487539,
1687
+ "learning_rate": 2.707054811641874e-06,
1688
+ "loss": 4.4753,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.4914982027685013,
1693
+ "grad_norm": 5.620489808473178,
1694
+ "learning_rate": 2.690589848251216e-06,
1695
+ "loss": 4.5693,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.4935376143982461,
1700
+ "grad_norm": 3.3770101266170562,
1701
+ "learning_rate": 2.674116565367048e-06,
1702
+ "loss": 4.1814,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.4955770260279909,
1707
+ "grad_norm": 4.579061030784262,
1708
+ "learning_rate": 2.6576356820694845e-06,
1709
+ "loss": 4.5227,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.4976164376577357,
1714
+ "grad_norm": 5.8851234142566415,
1715
+ "learning_rate": 2.641147917770409e-06,
1716
+ "loss": 4.5298,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.4996558492874806,
1721
+ "grad_norm": 9.014156661371938,
1722
+ "learning_rate": 2.62465399218207e-06,
1723
+ "loss": 4.7321,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.5016952609172254,
1728
+ "grad_norm": 4.875094287742309,
1729
+ "learning_rate": 2.608154625285662e-06,
1730
+ "loss": 4.499,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.5037346725469702,
1735
+ "grad_norm": 4.551111540309978,
1736
+ "learning_rate": 2.5916505372999023e-06,
1737
+ "loss": 4.5375,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.505774084176715,
1742
+ "grad_norm": 6.132709561525347,
1743
+ "learning_rate": 2.575142448649588e-06,
1744
+ "loss": 4.6213,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.5078134958064598,
1749
+ "grad_norm": 4.48174003397933,
1750
+ "learning_rate": 2.5586310799341525e-06,
1751
+ "loss": 4.4213,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.5098529074362047,
1756
+ "grad_norm": 5.701907718717752,
1757
+ "learning_rate": 2.542117151896205e-06,
1758
+ "loss": 4.5751,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.5118923190659495,
1763
+ "grad_norm": 5.285721986438155,
1764
+ "learning_rate": 2.525601385390075e-06,
1765
+ "loss": 4.5735,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.5139317306956943,
1770
+ "grad_norm": 4.831357059223784,
1771
+ "learning_rate": 2.5090845013503432e-06,
1772
+ "loss": 4.4947,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.5159711423254391,
1777
+ "grad_norm": 5.890813547398467,
1778
+ "learning_rate": 2.4925672207603728e-06,
1779
+ "loss": 4.6477,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.5180105539551839,
1784
+ "grad_norm": 5.13336486025524,
1785
+ "learning_rate": 2.4760502646208327e-06,
1786
+ "loss": 4.3634,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.5200499655849288,
1791
+ "grad_norm": 5.76181531319271,
1792
+ "learning_rate": 2.4595343539182357e-06,
1793
+ "loss": 4.4792,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.5220893772146735,
1798
+ "grad_norm": 4.720700356635706,
1799
+ "learning_rate": 2.4430202095934547e-06,
1800
+ "loss": 4.8011,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.5241287888444184,
1805
+ "grad_norm": 3.6552009210206764,
1806
+ "learning_rate": 2.4265085525102595e-06,
1807
+ "loss": 4.5557,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.5261682004741632,
1812
+ "grad_norm": 4.164312880021689,
1813
+ "learning_rate": 2.41000010342385e-06,
1814
+ "loss": 4.4727,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.528207612103908,
1819
+ "grad_norm": 3.9949595505069144,
1820
+ "learning_rate": 2.3934955829493913e-06,
1821
+ "loss": 4.615,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.5302470237336528,
1826
+ "grad_norm": 9.599795198507397,
1827
+ "learning_rate": 2.37699571153056e-06,
1828
+ "loss": 4.6411,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.5322864353633977,
1833
+ "grad_norm": 4.881244701910976,
1834
+ "learning_rate": 2.360501209408094e-06,
1835
+ "loss": 4.511,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.5343258469931425,
1840
+ "grad_norm": 5.613652005799349,
1841
+ "learning_rate": 2.3440127965883565e-06,
1842
+ "loss": 4.5933,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.5363652586228873,
1847
+ "grad_norm": 6.539569907879984,
1848
+ "learning_rate": 2.327531192811905e-06,
1849
+ "loss": 4.5861,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.5384046702526322,
1854
+ "grad_norm": 3.2807070439491173,
1855
+ "learning_rate": 2.311057117522072e-06,
1856
+ "loss": 4.3642,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.5404440818823769,
1861
+ "grad_norm": 10.987859768581247,
1862
+ "learning_rate": 2.2945912898335627e-06,
1863
+ "loss": 4.7251,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.5424834935121218,
1868
+ "grad_norm": 4.33875805182618,
1869
+ "learning_rate": 2.2781344285010617e-06,
1870
+ "loss": 4.4663,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.5445229051418665,
1875
+ "grad_norm": 3.668387406387121,
1876
+ "learning_rate": 2.2616872518878645e-06,
1877
+ "loss": 4.4141,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.5465623167716114,
1882
+ "grad_norm": 4.892756009503129,
1883
+ "learning_rate": 2.2452504779345126e-06,
1884
+ "loss": 4.7187,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.5486017284013562,
1889
+ "grad_norm": 4.369590818952964,
1890
+ "learning_rate": 2.228824824127459e-06,
1891
+ "loss": 4.4326,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.550641140031101,
1896
+ "grad_norm": 4.9893333587642354,
1897
+ "learning_rate": 2.2124110074677485e-06,
1898
+ "loss": 4.6509,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.5526805516608458,
1903
+ "grad_norm": 4.75169760739204,
1904
+ "learning_rate": 2.196009744439719e-06,
1905
+ "loss": 4.751,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.5547199632905907,
1910
+ "grad_norm": 6.1761937193487695,
1911
+ "learning_rate": 2.179621750979725e-06,
1912
+ "loss": 4.3822,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.5567593749203354,
1917
+ "grad_norm": 4.31169666950459,
1918
+ "learning_rate": 2.1632477424448893e-06,
1919
+ "loss": 4.6249,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.5587987865500803,
1924
+ "grad_norm": 8.068080427315808,
1925
+ "learning_rate": 2.146888433581873e-06,
1926
+ "loss": 4.4225,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.5608381981798252,
1931
+ "grad_norm": 5.9890454137128595,
1932
+ "learning_rate": 2.130544538495678e-06,
1933
+ "loss": 4.5456,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.5628776098095699,
1938
+ "grad_norm": 4.86884228126595,
1939
+ "learning_rate": 2.114216770618473e-06,
1940
+ "loss": 4.508,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.5649170214393148,
1945
+ "grad_norm": 4.516754247676273,
1946
+ "learning_rate": 2.097905842678457e-06,
1947
+ "loss": 4.5319,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.5669564330690596,
1952
+ "grad_norm": 4.619583468395096,
1953
+ "learning_rate": 2.0816124666687416e-06,
1954
+ "loss": 4.6548,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.5689958446988044,
1959
+ "grad_norm": 3.5811643080060693,
1960
+ "learning_rate": 2.065337353816272e-06,
1961
+ "loss": 4.2559,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.5710352563285492,
1966
+ "grad_norm": 4.052378199644621,
1967
+ "learning_rate": 2.049081214550788e-06,
1968
+ "loss": 4.5639,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 0.573074667958294,
1973
+ "grad_norm": 4.872742245565623,
1974
+ "learning_rate": 2.032844758473804e-06,
1975
+ "loss": 4.7058,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 0.5751140795880388,
1980
+ "grad_norm": 5.3735486404682185,
1981
+ "learning_rate": 2.016628694327638e-06,
1982
+ "loss": 4.5673,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 0.5771534912177837,
1987
+ "grad_norm": 5.811383736126772,
1988
+ "learning_rate": 2.000433729964475e-06,
1989
+ "loss": 4.514,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 0.5791929028475284,
1994
+ "grad_norm": 3.9005330620881002,
1995
+ "learning_rate": 1.984260572315467e-06,
1996
+ "loss": 4.3003,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 0.5812323144772733,
2001
+ "grad_norm": 4.981061673020621,
2002
+ "learning_rate": 1.968109927359874e-06,
2003
+ "loss": 4.591,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 0.5832717261070182,
2008
+ "grad_norm": 5.28160349345245,
2009
+ "learning_rate": 1.9519825000942474e-06,
2010
+ "loss": 4.5335,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 0.5853111377367629,
2015
+ "grad_norm": 4.193551615155147,
2016
+ "learning_rate": 1.935878994501659e-06,
2017
+ "loss": 4.2131,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 0.5873505493665078,
2022
+ "grad_norm": 15.810563918590717,
2023
+ "learning_rate": 1.919800113520964e-06,
2024
+ "loss": 4.4921,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 0.5893899609962526,
2029
+ "grad_norm": 5.781901199191389,
2030
+ "learning_rate": 1.9037465590161272e-06,
2031
+ "loss": 4.5006,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 0.5914293726259974,
2036
+ "grad_norm": 4.451645024528842,
2037
+ "learning_rate": 1.8877190317455756e-06,
2038
+ "loss": 4.3096,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 0.5934687842557422,
2043
+ "grad_norm": 6.015033853666374,
2044
+ "learning_rate": 1.8717182313316155e-06,
2045
+ "loss": 4.2639,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 0.5955081958854871,
2050
+ "grad_norm": 3.4963193002348705,
2051
+ "learning_rate": 1.8557448562298896e-06,
2052
+ "loss": 4.4011,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 0.5975476075152318,
2057
+ "grad_norm": 4.695537212839546,
2058
+ "learning_rate": 1.8397996036988935e-06,
2059
+ "loss": 4.6197,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 0.5995870191449767,
2064
+ "grad_norm": 3.3273564795922437,
2065
+ "learning_rate": 1.823883169769533e-06,
2066
+ "loss": 4.2336,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 0.6016264307747214,
2071
+ "grad_norm": 6.019335006969918,
2072
+ "learning_rate": 1.8079962492147465e-06,
2073
+ "loss": 4.519,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 0.6036658424044663,
2078
+ "grad_norm": 4.803166364148703,
2079
+ "learning_rate": 1.7921395355191735e-06,
2080
+ "loss": 4.0433,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 0.6057052540342112,
2085
+ "grad_norm": 3.4575731489719077,
2086
+ "learning_rate": 1.7763137208488878e-06,
2087
+ "loss": 4.3438,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 0.6077446656639559,
2092
+ "grad_norm": 5.841179295451367,
2093
+ "learning_rate": 1.7605194960211791e-06,
2094
+ "loss": 4.54,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 0.6097840772937008,
2099
+ "grad_norm": 4.010802292312647,
2100
+ "learning_rate": 1.7447575504743996e-06,
2101
+ "loss": 4.5196,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 0.6118234889234456,
2106
+ "grad_norm": 4.079807608234882,
2107
+ "learning_rate": 1.7290285722378697e-06,
2108
+ "loss": 4.4801,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 0.6138629005531904,
2113
+ "grad_norm": 4.703521982032006,
2114
+ "learning_rate": 1.7133332479018419e-06,
2115
+ "loss": 4.4832,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 0.6159023121829352,
2120
+ "grad_norm": 9.409558474450884,
2121
+ "learning_rate": 1.6976722625875362e-06,
2122
+ "loss": 4.0591,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 0.6179417238126801,
2127
+ "grad_norm": 5.118006818534075,
2128
+ "learning_rate": 1.6820462999172266e-06,
2129
+ "loss": 4.5095,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 0.6199811354424248,
2134
+ "grad_norm": 2.6789318264322097,
2135
+ "learning_rate": 1.6664560419844051e-06,
2136
+ "loss": 4.3834,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 0.6220205470721697,
2141
+ "grad_norm": 5.328537617550238,
2142
+ "learning_rate": 1.650902169324004e-06,
2143
+ "loss": 4.554,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 0.6240599587019146,
2148
+ "grad_norm": 3.9326508972377416,
2149
+ "learning_rate": 1.6353853608826942e-06,
2150
+ "loss": 4.3164,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 0.6260993703316593,
2155
+ "grad_norm": 4.470136786890529,
2156
+ "learning_rate": 1.6199062939892426e-06,
2157
+ "loss": 4.4296,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 0.6281387819614042,
2162
+ "grad_norm": 5.384698695320496,
2163
+ "learning_rate": 1.6044656443249512e-06,
2164
+ "loss": 4.4133,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 0.6301781935911489,
2169
+ "grad_norm": 3.245101255628368,
2170
+ "learning_rate": 1.5890640858941578e-06,
2171
+ "loss": 4.3772,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 0.6322176052208938,
2176
+ "grad_norm": 4.177433422795092,
2177
+ "learning_rate": 1.5737022909948187e-06,
2178
+ "loss": 4.5023,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 0.6342570168506386,
2183
+ "grad_norm": 4.942129871851291,
2184
+ "learning_rate": 1.55838093018916e-06,
2185
+ "loss": 4.3273,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 0.6362964284803834,
2190
+ "grad_norm": 4.032557715744289,
2191
+ "learning_rate": 1.5431006722744086e-06,
2192
+ "loss": 4.182,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 0.6383358401101282,
2197
+ "grad_norm": 8.249226380324744,
2198
+ "learning_rate": 1.5278621842535937e-06,
2199
+ "loss": 4.5497,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 0.6403752517398731,
2204
+ "grad_norm": 3.6779613986557465,
2205
+ "learning_rate": 1.51266613130644e-06,
2206
+ "loss": 4.4185,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 0.6424146633696178,
2211
+ "grad_norm": 5.380447409096335,
2212
+ "learning_rate": 1.4975131767603215e-06,
2213
+ "loss": 4.5836,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 0.6444540749993627,
2218
+ "grad_norm": 5.1455123232357876,
2219
+ "learning_rate": 1.4824039820613134e-06,
2220
+ "loss": 4.4765,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 0.6464934866291075,
2225
+ "grad_norm": 3.9507143956971023,
2226
+ "learning_rate": 1.4673392067453158e-06,
2227
+ "loss": 4.0599,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 0.6485328982588523,
2232
+ "grad_norm": 4.797317932658691,
2233
+ "learning_rate": 1.4523195084092665e-06,
2234
+ "loss": 4.5293,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 0.6505723098885972,
2239
+ "grad_norm": 3.5538316460061687,
2240
+ "learning_rate": 1.437345542682434e-06,
2241
+ "loss": 4.2219,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 0.6526117215183419,
2246
+ "grad_norm": 7.363861097074114,
2247
+ "learning_rate": 1.4224179631978002e-06,
2248
+ "loss": 4.5262,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 0.6546511331480868,
2253
+ "grad_norm": 5.098795556120382,
2254
+ "learning_rate": 1.407537421563525e-06,
2255
+ "loss": 4.4479,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 0.6566905447778316,
2260
+ "grad_norm": 3.3971768297731684,
2261
+ "learning_rate": 1.3927045673345085e-06,
2262
+ "loss": 4.4144,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 0.6587299564075764,
2267
+ "grad_norm": 4.591105852592274,
2268
+ "learning_rate": 1.3779200479840322e-06,
2269
+ "loss": 4.0876,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 0.6607693680373212,
2274
+ "grad_norm": 4.587346979025779,
2275
+ "learning_rate": 1.363184508875498e-06,
2276
+ "loss": 4.4312,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 0.6628087796670661,
2281
+ "grad_norm": 3.86759041881434,
2282
+ "learning_rate": 1.3484985932342554e-06,
2283
+ "loss": 4.4305,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 0.6648481912968108,
2288
+ "grad_norm": 4.625795822737769,
2289
+ "learning_rate": 1.3338629421195272e-06,
2290
+ "loss": 4.2427,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 0.6668876029265557,
2295
+ "grad_norm": 4.05468266187965,
2296
+ "learning_rate": 1.3192781943964255e-06,
2297
+ "loss": 4.0492,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 0.6689270145563005,
2302
+ "grad_norm": 12.057541220778676,
2303
+ "learning_rate": 1.304744986708059e-06,
2304
+ "loss": 4.3695,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 0.6709664261860453,
2309
+ "grad_norm": 3.955501871805983,
2310
+ "learning_rate": 1.2902639534477517e-06,
2311
+ "loss": 4.2644,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 0.6730058378157902,
2316
+ "grad_norm": 6.015589365963082,
2317
+ "learning_rate": 1.275835726731345e-06,
2318
+ "loss": 4.6075,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 0.675045249445535,
2323
+ "grad_norm": 3.6104804846277974,
2324
+ "learning_rate": 1.2614609363696054e-06,
2325
+ "loss": 4.2682,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 0.6770846610752798,
2330
+ "grad_norm": 3.2686468990077926,
2331
+ "learning_rate": 1.247140209840735e-06,
2332
+ "loss": 4.1998,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 0.6791240727050246,
2337
+ "grad_norm": 6.0351949078430716,
2338
+ "learning_rate": 1.2328741722629773e-06,
2339
+ "loss": 4.3661,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 0.6811634843347694,
2344
+ "grad_norm": 2.7443897616119495,
2345
+ "learning_rate": 1.2186634463673339e-06,
2346
+ "loss": 4.0667,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 0.6832028959645142,
2351
+ "grad_norm": 4.166081955260256,
2352
+ "learning_rate": 1.2045086524703808e-06,
2353
+ "loss": 4.2851,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 0.6852423075942591,
2358
+ "grad_norm": 3.8466934846642977,
2359
+ "learning_rate": 1.1904104084471872e-06,
2360
+ "loss": 4.2769,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 0.6872817192240038,
2365
+ "grad_norm": 4.318540374677886,
2366
+ "learning_rate": 1.1763693297043501e-06,
2367
+ "loss": 4.06,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 0.6893211308537487,
2372
+ "grad_norm": 12.509219369860856,
2373
+ "learning_rate": 1.162386029153125e-06,
2374
+ "loss": 4.3515,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 0.6913605424834935,
2379
+ "grad_norm": 20.50428059192819,
2380
+ "learning_rate": 1.1484611171826768e-06,
2381
+ "loss": 4.2457,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 0.6933999541132383,
2386
+ "grad_norm": 4.712481159806876,
2387
+ "learning_rate": 1.134595201633433e-06,
2388
+ "loss": 4.344,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 0.6954393657429832,
2393
+ "grad_norm": 4.559090159189356,
2394
+ "learning_rate": 1.1207888877705503e-06,
2395
+ "loss": 4.261,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 0.697478777372728,
2400
+ "grad_norm": 3.076117640729486,
2401
+ "learning_rate": 1.1070427782574964e-06,
2402
+ "loss": 4.3783,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 0.6995181890024728,
2407
+ "grad_norm": 10.814924419040487,
2408
+ "learning_rate": 1.0933574731297373e-06,
2409
+ "loss": 4.5092,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 0.7015576006322176,
2414
+ "grad_norm": 3.5390470251362354,
2415
+ "learning_rate": 1.0797335697685523e-06,
2416
+ "loss": 4.3021,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 0.7035970122619625,
2421
+ "grad_norm": 4.333079885813776,
2422
+ "learning_rate": 1.066171662874955e-06,
2423
+ "loss": 4.2686,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 0.7056364238917072,
2428
+ "grad_norm": 8.713694803463515,
2429
+ "learning_rate": 1.0526723444437287e-06,
2430
+ "loss": 4.2791,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 0.7076758355214521,
2435
+ "grad_norm": 4.354574129939474,
2436
+ "learning_rate": 1.0392362037375928e-06,
2437
+ "loss": 3.9504,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 0.7097152471511968,
2442
+ "grad_norm": 6.694211003803312,
2443
+ "learning_rate": 1.0258638272614763e-06,
2444
+ "loss": 4.1915,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 0.7117546587809417,
2449
+ "grad_norm": 3.241654472591947,
2450
+ "learning_rate": 1.012555798736918e-06,
2451
+ "loss": 4.1974,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 0.7137940704106865,
2456
+ "grad_norm": 5.514721835392517,
2457
+ "learning_rate": 9.993126990765825e-07,
2458
+ "loss": 4.2386,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 0.7158334820404313,
2463
+ "grad_norm": 5.583834432765822,
2464
+ "learning_rate": 9.861351063589084e-07,
2465
+ "loss": 4.3129,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 0.7178728936701761,
2470
+ "grad_norm": 2.949575907156756,
2471
+ "learning_rate": 9.730235958028707e-07,
2472
+ "loss": 4.1852,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 0.719912305299921,
2477
+ "grad_norm": 6.121302032242972,
2478
+ "learning_rate": 9.599787397428712e-07,
2479
+ "loss": 4.2227,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 0.7219517169296658,
2484
+ "grad_norm": 2.9030577045949673,
2485
+ "learning_rate": 9.47001107603758e-07,
2486
+ "loss": 4.3546,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 0.7239911285594106,
2491
+ "grad_norm": 3.9002064313827383,
2492
+ "learning_rate": 9.34091265875969e-07,
2493
+ "loss": 4.5714,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 0.7260305401891555,
2498
+ "grad_norm": 3.9962371475302647,
2499
+ "learning_rate": 9.212497780907989e-07,
2500
+ "loss": 4.3046,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 0.7280699518189002,
2505
+ "grad_norm": 4.008686311903414,
2506
+ "learning_rate": 9.084772047958107e-07,
2507
+ "loss": 4.4721,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 0.7301093634486451,
2512
+ "grad_norm": 5.036721845326526,
2513
+ "learning_rate": 8.957741035303547e-07,
2514
+ "loss": 4.3119,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 0.7321487750783899,
2519
+ "grad_norm": 3.6228822528546694,
2520
+ "learning_rate": 8.83141028801241e-07,
2521
+ "loss": 3.977,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 0.7341881867081347,
2526
+ "grad_norm": 4.485524936400477,
2527
+ "learning_rate": 8.705785320585281e-07,
2528
+ "loss": 4.4212,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 0.7362275983378795,
2533
+ "grad_norm": 5.387805154097571,
2534
+ "learning_rate": 8.580871616714561e-07,
2535
+ "loss": 4.3625,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 0.7382670099676243,
2540
+ "grad_norm": 3.846937945913234,
2541
+ "learning_rate": 8.456674629045081e-07,
2542
+ "loss": 4.1486,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 0.7403064215973691,
2547
+ "grad_norm": 6.153503941340491,
2548
+ "learning_rate": 8.333199778936052e-07,
2549
+ "loss": 4.6233,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 0.742345833227114,
2554
+ "grad_norm": 3.444349995280495,
2555
+ "learning_rate": 8.210452456224471e-07,
2556
+ "loss": 4.2848,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 0.7443852448568588,
2561
+ "grad_norm": 5.676013436667852,
2562
+ "learning_rate": 8.08843801898982e-07,
2563
+ "loss": 4.3391,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 0.7464246564866036,
2568
+ "grad_norm": 4.470026226905971,
2569
+ "learning_rate": 7.967161793320175e-07,
2570
+ "loss": 4.2121,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 0.7484640681163485,
2575
+ "grad_norm": 4.040281249461269,
2576
+ "learning_rate": 7.846629073079734e-07,
2577
+ "loss": 4.1892,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 0.7505034797460932,
2582
+ "grad_norm": 6.190674341778419,
2583
+ "learning_rate": 7.726845119677698e-07,
2584
+ "loss": 4.5201,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 0.7525428913758381,
2589
+ "grad_norm": 2.909828341550929,
2590
+ "learning_rate": 7.607815161838647e-07,
2591
+ "loss": 4.2093,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 0.7545823030055829,
2596
+ "grad_norm": 6.443973285289415,
2597
+ "learning_rate": 7.489544395374276e-07,
2598
+ "loss": 4.4615,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 0.7566217146353277,
2603
+ "grad_norm": 4.2246542700997995,
2604
+ "learning_rate": 7.372037982956581e-07,
2605
+ "loss": 4.2434,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 0.7586611262650725,
2610
+ "grad_norm": 4.279904431120203,
2611
+ "learning_rate": 7.255301053892538e-07,
2612
+ "loss": 4.3651,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 0.7607005378948174,
2617
+ "grad_norm": 4.186725897756824,
2618
+ "learning_rate": 7.13933870390014e-07,
2619
+ "loss": 4.119,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 0.7627399495245621,
2624
+ "grad_norm": 3.298108219376201,
2625
+ "learning_rate": 7.024155994886056e-07,
2626
+ "loss": 4.3578,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 0.764779361154307,
2631
+ "grad_norm": 7.412387730617449,
2632
+ "learning_rate": 6.909757954724567e-07,
2633
+ "loss": 4.3607,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 0.7668187727840517,
2638
+ "grad_norm": 5.690719384335585,
2639
+ "learning_rate": 6.796149577038172e-07,
2640
+ "loss": 4.4603,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 0.7688581844137966,
2645
+ "grad_norm": 3.3341556363071145,
2646
+ "learning_rate": 6.683335820979577e-07,
2647
+ "loss": 4.2913,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 0.7708975960435415,
2652
+ "grad_norm": 8.374678448066359,
2653
+ "learning_rate": 6.57132161101521e-07,
2654
+ "loss": 4.2341,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 0.7729370076732862,
2659
+ "grad_norm": 4.567460131418673,
2660
+ "learning_rate": 6.460111836710292e-07,
2661
+ "loss": 4.2593,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 0.7749764193030311,
2666
+ "grad_norm": 4.921509276106569,
2667
+ "learning_rate": 6.349711352515397e-07,
2668
+ "loss": 4.2571,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 0.7770158309327759,
2673
+ "grad_norm": 5.485393631951355,
2674
+ "learning_rate": 6.240124977554496e-07,
2675
+ "loss": 4.2477,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 0.7790552425625207,
2680
+ "grad_norm": 4.0589121948883315,
2681
+ "learning_rate": 6.1313574954147e-07,
2682
+ "loss": 4.2543,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 0.7810946541922655,
2687
+ "grad_norm": 6.063871941982522,
2688
+ "learning_rate": 6.023413653937335e-07,
2689
+ "loss": 4.1011,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 0.7831340658220104,
2694
+ "grad_norm": 4.6886199538087,
2695
+ "learning_rate": 5.916298165010778e-07,
2696
+ "loss": 4.2018,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 0.7851734774517551,
2701
+ "grad_norm": 6.255729817180625,
2702
+ "learning_rate": 5.810015704364722e-07,
2703
+ "loss": 4.0752,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 0.7872128890815,
2708
+ "grad_norm": 7.741347653825498,
2709
+ "learning_rate": 5.704570911366117e-07,
2710
+ "loss": 4.4319,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 0.7892523007112449,
2715
+ "grad_norm": 6.658946418910774,
2716
+ "learning_rate": 5.599968388816635e-07,
2717
+ "loss": 4.623,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 0.7912917123409896,
2722
+ "grad_norm": 5.600756053871576,
2723
+ "learning_rate": 5.496212702751736e-07,
2724
+ "loss": 4.541,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 0.7933311239707345,
2729
+ "grad_norm": 9.936589010366395,
2730
+ "learning_rate": 5.393308382241383e-07,
2731
+ "loss": 4.1214,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 0.7953705356004792,
2736
+ "grad_norm": 6.814478103726471,
2737
+ "learning_rate": 5.291259919192337e-07,
2738
+ "loss": 4.3134,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 0.7974099472302241,
2743
+ "grad_norm": 3.908443331703017,
2744
+ "learning_rate": 5.190071768152067e-07,
2745
+ "loss": 4.4869,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 0.7994493588599689,
2750
+ "grad_norm": 3.716131760782437,
2751
+ "learning_rate": 5.089748346114309e-07,
2752
+ "loss": 4.4105,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 0.8014887704897137,
2757
+ "grad_norm": 6.8101963045551415,
2758
+ "learning_rate": 4.990294032326252e-07,
2759
+ "loss": 4.0734,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 0.8035281821194585,
2764
+ "grad_norm": 3.7721519878629373,
2765
+ "learning_rate": 4.891713168097404e-07,
2766
+ "loss": 4.2706,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 0.8055675937492034,
2771
+ "grad_norm": 7.455829480816375,
2772
+ "learning_rate": 4.794010056610044e-07,
2773
+ "loss": 4.5555,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 0.8076070053789481,
2778
+ "grad_norm": 5.575426927891118,
2779
+ "learning_rate": 4.6971889627314305e-07,
2780
+ "loss": 4.1672,
2781
+ "step": 3960
2782
+ },
2783
+ {
2784
+ "epoch": 0.809646417008693,
2785
+ "grad_norm": 8.292437401244339,
2786
+ "learning_rate": 4.601254112827608e-07,
2787
+ "loss": 4.3117,
2788
+ "step": 3970
2789
+ },
2790
+ {
2791
+ "epoch": 0.8116858286384379,
2792
+ "grad_norm": 5.710115393344384,
2793
+ "learning_rate": 4.5062096945789004e-07,
2794
+ "loss": 4.4062,
2795
+ "step": 3980
2796
+ },
2797
+ {
2798
+ "epoch": 0.8137252402681826,
2799
+ "grad_norm": 3.046501449591303,
2800
+ "learning_rate": 4.412059856797182e-07,
2801
+ "loss": 4.2776,
2802
+ "step": 3990
2803
+ },
2804
+ {
2805
+ "epoch": 0.8157646518979275,
2806
+ "grad_norm": 6.346563023941847,
2807
+ "learning_rate": 4.318808709244693e-07,
2808
+ "loss": 4.1605,
2809
+ "step": 4000
2810
+ },
2811
+ {
2812
+ "epoch": 0.8178040635276723,
2813
+ "grad_norm": 7.581367680226025,
2814
+ "learning_rate": 4.2264603224546977e-07,
2815
+ "loss": 4.32,
2816
+ "step": 4010
2817
+ },
2818
+ {
2819
+ "epoch": 0.8198434751574171,
2820
+ "grad_norm": 3.438971658725587,
2821
+ "learning_rate": 4.135018727553791e-07,
2822
+ "loss": 4.355,
2823
+ "step": 4020
2824
+ },
2825
+ {
2826
+ "epoch": 0.8218828867871619,
2827
+ "grad_norm": 5.36352458560893,
2828
+ "learning_rate": 4.0444879160859096e-07,
2829
+ "loss": 4.1265,
2830
+ "step": 4030
2831
+ },
2832
+ {
2833
+ "epoch": 0.8239222984169067,
2834
+ "grad_norm": 4.14351500900665,
2835
+ "learning_rate": 3.954871839838134e-07,
2836
+ "loss": 4.0768,
2837
+ "step": 4040
2838
+ },
2839
+ {
2840
+ "epoch": 0.8259617100466515,
2841
+ "grad_norm": 12.933552582436281,
2842
+ "learning_rate": 3.866174410668161e-07,
2843
+ "loss": 4.3251,
2844
+ "step": 4050
2845
+ },
2846
+ {
2847
+ "epoch": 0.8280011216763964,
2848
+ "grad_norm": 3.3139167027662144,
2849
+ "learning_rate": 3.7783995003335486e-07,
2850
+ "loss": 4.2153,
2851
+ "step": 4060
2852
+ },
2853
+ {
2854
+ "epoch": 0.8300405333061411,
2855
+ "grad_norm": 18.71624346031171,
2856
+ "learning_rate": 3.6915509403227216e-07,
2857
+ "loss": 4.2698,
2858
+ "step": 4070
2859
+ },
2860
+ {
2861
+ "epoch": 0.832079944935886,
2862
+ "grad_norm": 10.79391233473762,
2863
+ "learning_rate": 3.6056325216877104e-07,
2864
+ "loss": 4.2338,
2865
+ "step": 4080
2866
+ },
2867
+ {
2868
+ "epoch": 0.8341193565656309,
2869
+ "grad_norm": 4.261424850688782,
2870
+ "learning_rate": 3.520647994878676e-07,
2871
+ "loss": 4.0913,
2872
+ "step": 4090
2873
+ },
2874
+ {
2875
+ "epoch": 0.8361587681953756,
2876
+ "grad_norm": 5.630887303127973,
2877
+ "learning_rate": 3.436601069580181e-07,
2878
+ "loss": 4.2007,
2879
+ "step": 4100
2880
+ },
2881
+ {
2882
+ "epoch": 0.8381981798251205,
2883
+ "grad_norm": 4.374740825282518,
2884
+ "learning_rate": 3.353495414549282e-07,
2885
+ "loss": 4.3166,
2886
+ "step": 4110
2887
+ },
2888
+ {
2889
+ "epoch": 0.8402375914548653,
2890
+ "grad_norm": 5.070493007615233,
2891
+ "learning_rate": 3.271334657455366e-07,
2892
+ "loss": 4.3273,
2893
+ "step": 4120
2894
+ },
2895
+ {
2896
+ "epoch": 0.8422770030846101,
2897
+ "grad_norm": 3.9659319877143755,
2898
+ "learning_rate": 3.1901223847217943e-07,
2899
+ "loss": 4.0599,
2900
+ "step": 4130
2901
+ },
2902
+ {
2903
+ "epoch": 0.8443164147143549,
2904
+ "grad_norm": 3.302210490940212,
2905
+ "learning_rate": 3.1098621413693684e-07,
2906
+ "loss": 4.1971,
2907
+ "step": 4140
2908
+ },
2909
+ {
2910
+ "epoch": 0.8463558263440998,
2911
+ "grad_norm": 8.124128614183714,
2912
+ "learning_rate": 3.030557430861572e-07,
2913
+ "loss": 4.4926,
2914
+ "step": 4150
2915
+ },
2916
+ {
2917
+ "epoch": 0.8483952379738445,
2918
+ "grad_norm": 3.630713845863831,
2919
+ "learning_rate": 2.9522117149516443e-07,
2920
+ "loss": 4.4875,
2921
+ "step": 4160
2922
+ },
2923
+ {
2924
+ "epoch": 0.8504346496035894,
2925
+ "grad_norm": 4.977767116293893,
2926
+ "learning_rate": 2.874828413531475e-07,
2927
+ "loss": 4.27,
2928
+ "step": 4170
2929
+ },
2930
+ {
2931
+ "epoch": 0.8524740612333341,
2932
+ "grad_norm": 4.821953875486025,
2933
+ "learning_rate": 2.798410904482296e-07,
2934
+ "loss": 4.2437,
2935
+ "step": 4180
2936
+ },
2937
+ {
2938
+ "epoch": 0.854513472863079,
2939
+ "grad_norm": 3.528796787732878,
2940
+ "learning_rate": 2.7229625235272785e-07,
2941
+ "loss": 4.2598,
2942
+ "step": 4190
2943
+ },
2944
+ {
2945
+ "epoch": 0.8565528844928239,
2946
+ "grad_norm": 8.200601299622635,
2947
+ "learning_rate": 2.6484865640858724e-07,
2948
+ "loss": 4.4022,
2949
+ "step": 4200
2950
+ },
2951
+ {
2952
+ "epoch": 0.8585922961225686,
2953
+ "grad_norm": 4.935057938188518,
2954
+ "learning_rate": 2.5749862771300954e-07,
2955
+ "loss": 4.2679,
2956
+ "step": 4210
2957
+ },
2958
+ {
2959
+ "epoch": 0.8606317077523135,
2960
+ "grad_norm": 4.4371812067689325,
2961
+ "learning_rate": 2.502464871042584e-07,
2962
+ "loss": 3.9411,
2963
+ "step": 4220
2964
+ },
2965
+ {
2966
+ "epoch": 0.8626711193820583,
2967
+ "grad_norm": 6.133431718705425,
2968
+ "learning_rate": 2.430925511476556e-07,
2969
+ "loss": 4.212,
2970
+ "step": 4230
2971
+ },
2972
+ {
2973
+ "epoch": 0.8647105310118031,
2974
+ "grad_norm": 3.7989128876998337,
2975
+ "learning_rate": 2.360371321217636e-07,
2976
+ "loss": 4.3091,
2977
+ "step": 4240
2978
+ },
2979
+ {
2980
+ "epoch": 0.8667499426415479,
2981
+ "grad_norm": 7.197995519271034,
2982
+ "learning_rate": 2.2908053800475284e-07,
2983
+ "loss": 4.4547,
2984
+ "step": 4250
2985
+ },
2986
+ {
2987
+ "epoch": 0.8687893542712928,
2988
+ "grad_norm": 6.338189710574811,
2989
+ "learning_rate": 2.2222307246095892e-07,
2990
+ "loss": 4.1689,
2991
+ "step": 4260
2992
+ },
2993
+ {
2994
+ "epoch": 0.8708287659010375,
2995
+ "grad_norm": 5.284651087725345,
2996
+ "learning_rate": 2.1546503482762742e-07,
2997
+ "loss": 4.1259,
2998
+ "step": 4270
2999
+ },
3000
+ {
3001
+ "epoch": 0.8728681775307824,
3002
+ "grad_norm": 5.362100007675278,
3003
+ "learning_rate": 2.088067201018451e-07,
3004
+ "loss": 4.2418,
3005
+ "step": 4280
3006
+ },
3007
+ {
3008
+ "epoch": 0.8749075891605271,
3009
+ "grad_norm": 2.9996892461239066,
3010
+ "learning_rate": 2.022484189276669e-07,
3011
+ "loss": 4.3194,
3012
+ "step": 4290
3013
+ },
3014
+ {
3015
+ "epoch": 0.876947000790272,
3016
+ "grad_norm": 7.9814644784987925,
3017
+ "learning_rate": 1.9579041758342522e-07,
3018
+ "loss": 4.062,
3019
+ "step": 4300
3020
+ },
3021
+ {
3022
+ "epoch": 0.8789864124200168,
3023
+ "grad_norm": 3.855185899855706,
3024
+ "learning_rate": 1.894329979692361e-07,
3025
+ "loss": 4.1905,
3026
+ "step": 4310
3027
+ },
3028
+ {
3029
+ "epoch": 0.8810258240497616,
3030
+ "grad_norm": 3.8633348931471305,
3031
+ "learning_rate": 1.8317643759469233e-07,
3032
+ "loss": 4.5633,
3033
+ "step": 4320
3034
+ },
3035
+ {
3036
+ "epoch": 0.8830652356795065,
3037
+ "grad_norm": 5.787458872245402,
3038
+ "learning_rate": 1.77021009566751e-07,
3039
+ "loss": 4.1177,
3040
+ "step": 4330
3041
+ },
3042
+ {
3043
+ "epoch": 0.8851046473092513,
3044
+ "grad_norm": 3.208157539224473,
3045
+ "learning_rate": 1.7096698257781124e-07,
3046
+ "loss": 4.2558,
3047
+ "step": 4340
3048
+ },
3049
+ {
3050
+ "epoch": 0.8871440589389961,
3051
+ "grad_norm": 6.020899915866313,
3052
+ "learning_rate": 1.6501462089398485e-07,
3053
+ "loss": 4.3454,
3054
+ "step": 4350
3055
+ },
3056
+ {
3057
+ "epoch": 0.8891834705687409,
3058
+ "grad_norm": 4.643730489010232,
3059
+ "learning_rate": 1.591641843435618e-07,
3060
+ "loss": 4.0158,
3061
+ "step": 4360
3062
+ },
3063
+ {
3064
+ "epoch": 0.8912228821984858,
3065
+ "grad_norm": 5.134502691716626,
3066
+ "learning_rate": 1.534159283056691e-07,
3067
+ "loss": 4.2297,
3068
+ "step": 4370
3069
+ },
3070
+ {
3071
+ "epoch": 0.8932622938282305,
3072
+ "grad_norm": 6.77345470394396,
3073
+ "learning_rate": 1.4777010369912054e-07,
3074
+ "loss": 4.271,
3075
+ "step": 4380
3076
+ },
3077
+ {
3078
+ "epoch": 0.8953017054579754,
3079
+ "grad_norm": 3.9105901688770763,
3080
+ "learning_rate": 1.4222695697146682e-07,
3081
+ "loss": 4.1278,
3082
+ "step": 4390
3083
+ },
3084
+ {
3085
+ "epoch": 0.8973411170877202,
3086
+ "grad_norm": 5.788934405987601,
3087
+ "learning_rate": 1.3678673008823584e-07,
3088
+ "loss": 4.2833,
3089
+ "step": 4400
3090
+ },
3091
+ {
3092
+ "epoch": 0.899380528717465,
3093
+ "grad_norm": 6.550185731329167,
3094
+ "learning_rate": 1.3144966052237002e-07,
3095
+ "loss": 4.2289,
3096
+ "step": 4410
3097
+ },
3098
+ {
3099
+ "epoch": 0.9014199403472098,
3100
+ "grad_norm": 3.933076654499303,
3101
+ "learning_rate": 1.2621598124386376e-07,
3102
+ "loss": 3.961,
3103
+ "step": 4420
3104
+ },
3105
+ {
3106
+ "epoch": 0.9034593519769546,
3107
+ "grad_norm": 7.28993855071651,
3108
+ "learning_rate": 1.2108592070958936e-07,
3109
+ "loss": 4.1796,
3110
+ "step": 4430
3111
+ },
3112
+ {
3113
+ "epoch": 0.9054987636066995,
3114
+ "grad_norm": 2.8163528727824465,
3115
+ "learning_rate": 1.1605970285332835e-07,
3116
+ "loss": 4.2515,
3117
+ "step": 4440
3118
+ },
3119
+ {
3120
+ "epoch": 0.9075381752364443,
3121
+ "grad_norm": 5.909100454954851,
3122
+ "learning_rate": 1.1113754707599345e-07,
3123
+ "loss": 4.0799,
3124
+ "step": 4450
3125
+ },
3126
+ {
3127
+ "epoch": 0.9095775868661891,
3128
+ "grad_norm": 3.9679302320486065,
3129
+ "learning_rate": 1.0631966823605456e-07,
3130
+ "loss": 4.1994,
3131
+ "step": 4460
3132
+ },
3133
+ {
3134
+ "epoch": 0.9116169984959339,
3135
+ "grad_norm": 3.8889816643991453,
3136
+ "learning_rate": 1.0160627664015793e-07,
3137
+ "loss": 4.273,
3138
+ "step": 4470
3139
+ },
3140
+ {
3141
+ "epoch": 0.9136564101256788,
3142
+ "grad_norm": 5.2979751703547,
3143
+ "learning_rate": 9.699757803394549e-08,
3144
+ "loss": 4.0648,
3145
+ "step": 4480
3146
+ },
3147
+ {
3148
+ "epoch": 0.9156958217554235,
3149
+ "grad_norm": 3.6151393643840817,
3150
+ "learning_rate": 9.249377359307532e-08,
3151
+ "loss": 4.06,
3152
+ "step": 4490
3153
+ },
3154
+ {
3155
+ "epoch": 0.9177352333851684,
3156
+ "grad_norm": 4.111366955877977,
3157
+ "learning_rate": 8.809505991443979e-08,
3158
+ "loss": 4.1282,
3159
+ "step": 4500
3160
+ },
3161
+ {
3162
+ "epoch": 0.9197746450149132,
3163
+ "grad_norm": 3.978413951555099,
3164
+ "learning_rate": 8.380162900758299e-08,
3165
+ "loss": 4.2936,
3166
+ "step": 4510
3167
+ },
3168
+ {
3169
+ "epoch": 0.921814056644658,
3170
+ "grad_norm": 3.641231421347921,
3171
+ "learning_rate": 7.96136682863205e-08,
3172
+ "loss": 4.3491,
3173
+ "step": 4520
3174
+ },
3175
+ {
3176
+ "epoch": 0.9238534682744028,
3177
+ "grad_norm": 5.665911738375297,
3178
+ "learning_rate": 7.553136056055621e-08,
3179
+ "loss": 4.3914,
3180
+ "step": 4530
3181
+ },
3182
+ {
3183
+ "epoch": 0.9258928799041477,
3184
+ "grad_norm": 2.896437566008968,
3185
+ "learning_rate": 7.155488402830618e-08,
3186
+ "loss": 4.2446,
3187
+ "step": 4540
3188
+ },
3189
+ {
3190
+ "epoch": 0.9279322915338925,
3191
+ "grad_norm": 4.397366238946691,
3192
+ "learning_rate": 6.7684412267916e-08,
3193
+ "loss": 4.1295,
3194
+ "step": 4550
3195
+ },
3196
+ {
3197
+ "epoch": 0.9299717031636373,
3198
+ "grad_norm": 3.7962281859910574,
3199
+ "learning_rate": 6.392011423048711e-08,
3200
+ "loss": 4.1476,
3201
+ "step": 4560
3202
+ },
3203
+ {
3204
+ "epoch": 0.9320111147933821,
3205
+ "grad_norm": 5.396299510851452,
3206
+ "learning_rate": 6.026215423249992e-08,
3207
+ "loss": 4.1864,
3208
+ "step": 4570
3209
+ },
3210
+ {
3211
+ "epoch": 0.9340505264231269,
3212
+ "grad_norm": 6.24798187472314,
3213
+ "learning_rate": 5.671069194864154e-08,
3214
+ "loss": 4.6053,
3215
+ "step": 4580
3216
+ },
3217
+ {
3218
+ "epoch": 0.9360899380528718,
3219
+ "grad_norm": 4.347169377156265,
3220
+ "learning_rate": 5.32658824048371e-08,
3221
+ "loss": 4.4272,
3222
+ "step": 4590
3223
+ },
3224
+ {
3225
+ "epoch": 0.9381293496826165,
3226
+ "grad_norm": 7.01565530019786,
3227
+ "learning_rate": 4.99278759714808e-08,
3228
+ "loss": 4.3681,
3229
+ "step": 4600
3230
+ },
3231
+ {
3232
+ "epoch": 0.9401687613123614,
3233
+ "grad_norm": 9.337991796223331,
3234
+ "learning_rate": 4.669681835687279e-08,
3235
+ "loss": 4.2015,
3236
+ "step": 4610
3237
+ },
3238
+ {
3239
+ "epoch": 0.9422081729421062,
3240
+ "grad_norm": 6.742563868831824,
3241
+ "learning_rate": 4.357285060085953e-08,
3242
+ "loss": 3.974,
3243
+ "step": 4620
3244
+ },
3245
+ {
3246
+ "epoch": 0.944247584571851,
3247
+ "grad_norm": 6.533686057687156,
3248
+ "learning_rate": 4.0556109068675685e-08,
3249
+ "loss": 4.3575,
3250
+ "step": 4630
3251
+ },
3252
+ {
3253
+ "epoch": 0.9462869962015958,
3254
+ "grad_norm": 4.02192579282106,
3255
+ "learning_rate": 3.764672544499331e-08,
3256
+ "loss": 4.0806,
3257
+ "step": 4640
3258
+ },
3259
+ {
3260
+ "epoch": 0.9483264078313407,
3261
+ "grad_norm": 6.441975788133546,
3262
+ "learning_rate": 3.48448267281723e-08,
3263
+ "loss": 4.0688,
3264
+ "step": 4650
3265
+ },
3266
+ {
3267
+ "epoch": 0.9503658194610854,
3268
+ "grad_norm": 3.9399725566315515,
3269
+ "learning_rate": 3.215053522471756e-08,
3270
+ "loss": 4.3011,
3271
+ "step": 4660
3272
+ },
3273
+ {
3274
+ "epoch": 0.9524052310908303,
3275
+ "grad_norm": 4.847038369316615,
3276
+ "learning_rate": 2.9563968543939726e-08,
3277
+ "loss": 4.3392,
3278
+ "step": 4670
3279
+ },
3280
+ {
3281
+ "epoch": 0.9544446427205752,
3282
+ "grad_norm": 6.073962610386516,
3283
+ "learning_rate": 2.708523959282172e-08,
3284
+ "loss": 4.2602,
3285
+ "step": 4680
3286
+ },
3287
+ {
3288
+ "epoch": 0.9564840543503199,
3289
+ "grad_norm": 3.436252568358376,
3290
+ "learning_rate": 2.471445657108995e-08,
3291
+ "loss": 4.4303,
3292
+ "step": 4690
3293
+ },
3294
+ {
3295
+ "epoch": 0.9585234659800648,
3296
+ "grad_norm": 5.1023824914571545,
3297
+ "learning_rate": 2.245172296649084e-08,
3298
+ "loss": 4.1511,
3299
+ "step": 4700
3300
+ },
3301
+ {
3302
+ "epoch": 0.9605628776098095,
3303
+ "grad_norm": 4.674912647498775,
3304
+ "learning_rate": 2.0297137550274458e-08,
3305
+ "loss": 4.3211,
3306
+ "step": 4710
3307
+ },
3308
+ {
3309
+ "epoch": 0.9626022892395544,
3310
+ "grad_norm": 3.990797348629162,
3311
+ "learning_rate": 1.8250794372882687e-08,
3312
+ "loss": 4.2356,
3313
+ "step": 4720
3314
+ },
3315
+ {
3316
+ "epoch": 0.9646417008692992,
3317
+ "grad_norm": 4.3953191044322555,
3318
+ "learning_rate": 1.631278275984305e-08,
3319
+ "loss": 4.4084,
3320
+ "step": 4730
3321
+ },
3322
+ {
3323
+ "epoch": 0.966681112499044,
3324
+ "grad_norm": 4.412715515426169,
3325
+ "learning_rate": 1.4483187307870461e-08,
3326
+ "loss": 4.035,
3327
+ "step": 4740
3328
+ },
3329
+ {
3330
+ "epoch": 0.9687205241287888,
3331
+ "grad_norm": 5.844550729133818,
3332
+ "learning_rate": 1.276208788117378e-08,
3333
+ "loss": 4.1833,
3334
+ "step": 4750
3335
+ },
3336
+ {
3337
+ "epoch": 0.9707599357585337,
3338
+ "grad_norm": 4.814300797469836,
3339
+ "learning_rate": 1.114955960797054e-08,
3340
+ "loss": 4.1522,
3341
+ "step": 4760
3342
+ },
3343
+ {
3344
+ "epoch": 0.9727993473882784,
3345
+ "grad_norm": 3.808346781062702,
3346
+ "learning_rate": 9.645672877206524e-09,
3347
+ "loss": 4.3424,
3348
+ "step": 4770
3349
+ },
3350
+ {
3351
+ "epoch": 0.9748387590180233,
3352
+ "grad_norm": 4.616232239908184,
3353
+ "learning_rate": 8.250493335483222e-09,
3354
+ "loss": 4.2023,
3355
+ "step": 4780
3356
+ },
3357
+ {
3358
+ "epoch": 0.9768781706477682,
3359
+ "grad_norm": 3.5474207218106226,
3360
+ "learning_rate": 6.96408188419373e-09,
3361
+ "loss": 4.2108,
3362
+ "step": 4790
3363
+ },
3364
+ {
3365
+ "epoch": 0.9789175822775129,
3366
+ "grad_norm": 5.824257814537629,
3367
+ "learning_rate": 5.78649467686182e-09,
3368
+ "loss": 4.4236,
3369
+ "step": 4800
3370
+ },
3371
+ {
3372
+ "epoch": 0.9809569939072578,
3373
+ "grad_norm": 5.7167849452363955,
3374
+ "learning_rate": 4.7177831166936305e-09,
3375
+ "loss": 4.4846,
3376
+ "step": 4810
3377
+ },
3378
+ {
3379
+ "epoch": 0.9829964055370026,
3380
+ "grad_norm": 4.277887071585096,
3381
+ "learning_rate": 3.757993854331399e-09,
3382
+ "loss": 4.1656,
3383
+ "step": 4820
3384
+ },
3385
+ {
3386
+ "epoch": 0.9850358171667474,
3387
+ "grad_norm": 7.68100927972657,
3388
+ "learning_rate": 2.907168785818426e-09,
3389
+ "loss": 4.3236,
3390
+ "step": 4830
3391
+ },
3392
+ {
3393
+ "epoch": 0.9870752287964922,
3394
+ "grad_norm": 6.350245782652061,
3395
+ "learning_rate": 2.1653450507699846e-09,
3396
+ "loss": 4.0609,
3397
+ "step": 4840
3398
+ },
3399
+ {
3400
+ "epoch": 0.989114640426237,
3401
+ "grad_norm": 5.287321922805873,
3402
+ "learning_rate": 1.5325550307523918e-09,
3403
+ "loss": 4.5286,
3404
+ "step": 4850
3405
+ },
3406
+ {
3407
+ "epoch": 0.9911540520559818,
3408
+ "grad_norm": 3.7490178618124177,
3409
+ "learning_rate": 1.0088263478685855e-09,
3410
+ "loss": 4.3112,
3411
+ "step": 4860
3412
+ },
3413
+ {
3414
+ "epoch": 0.9931934636857267,
3415
+ "grad_norm": 3.5121517243670644,
3416
+ "learning_rate": 5.941818635532559e-10,
3417
+ "loss": 4.1425,
3418
+ "step": 4870
3419
+ },
3420
+ {
3421
+ "epoch": 0.9952328753154714,
3422
+ "grad_norm": 6.450314985115036,
3423
+ "learning_rate": 2.886396775747535e-10,
3424
+ "loss": 4.1702,
3425
+ "step": 4880
3426
+ },
3427
+ {
3428
+ "epoch": 0.9972722869452163,
3429
+ "grad_norm": 3.28593100847704,
3430
+ "learning_rate": 9.221312724516651e-11,
3431
+ "loss": 4.1792,
3432
+ "step": 4890
3433
+ },
3434
+ {
3435
+ "epoch": 0.9993116985749612,
3436
+ "grad_norm": 6.915473930840807,
3437
+ "learning_rate": 4.910786837453163e-12,
3438
+ "loss": 4.6966,
3439
+ "step": 4900
3440
+ },
3441
+ {
3442
+ "epoch": 0.9999235220638846,
3443
+ "step": 4903,
3444
+ "total_flos": 8.858734643076137e+17,
3445
+ "train_loss": 5.744887723889663,
3446
+ "train_runtime": 109223.0893,
3447
+ "train_samples_per_second": 11.493,
3448
+ "train_steps_per_second": 0.045
3449
+ }
3450
+ ],
3451
+ "logging_steps": 10,
3452
+ "max_steps": 4903,
3453
+ "num_input_tokens_seen": 0,
3454
+ "num_train_epochs": 1,
3455
+ "save_steps": 2000,
3456
+ "stateful_callbacks": {
3457
+ "TrainerControl": {
3458
+ "args": {
3459
+ "should_epoch_stop": false,
3460
+ "should_evaluate": false,
3461
+ "should_log": false,
3462
+ "should_save": true,
3463
+ "should_training_stop": true
3464
+ },
3465
+ "attributes": {}
3466
+ }
3467
+ },
3468
+ "total_flos": 8.858734643076137e+17,
3469
+ "train_batch_size": 1,
3470
+ "trial_name": null,
3471
+ "trial_params": null
3472
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1709fb6af3855fc8f4f2d9004b358a7c9774a55944ea9f1be1af741903789156
3
+ size 8312
vocab.json ADDED
The diff for this file is too large to render. See raw diff