Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,26 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
| 4 |
|
|
@@ -10,8 +32,8 @@ import requests
|
|
| 10 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 11 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 12 |
|
| 13 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained('
|
| 14 |
-
model = CvtForImageClassification.from_pretrained('
|
| 15 |
|
| 16 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 17 |
outputs = model(**inputs)
|
|
@@ -19,4 +41,5 @@ logits = outputs.logits
|
|
| 19 |
# model predicts one of the 1000 ImageNet classes
|
| 20 |
predicted_class_idx = logits.argmax(-1).item()
|
| 21 |
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
|
|
|
| 22 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- image-classification
|
| 6 |
+
datasets:
|
| 7 |
+
- imagenet-1k
|
| 8 |
+
widget:
|
| 9 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
| 10 |
+
example_title: Tiger
|
| 11 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
|
| 12 |
+
example_title: Teapot
|
| 13 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
|
| 14 |
+
example_title: Palace
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Convolutional Vision Transformer (CvT)
|
| 18 |
+
|
| 19 |
+
CvT-21 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT).
|
| 20 |
+
|
| 21 |
+
Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team.
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
|
| 25 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
| 26 |
|
|
|
|
| 32 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 33 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 34 |
|
| 35 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-21')
|
| 36 |
+
model = CvtForImageClassification.from_pretrained('microsoft/cvt-21')
|
| 37 |
|
| 38 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 39 |
outputs = model(**inputs)
|
|
|
|
| 41 |
# model predicts one of the 1000 ImageNet classes
|
| 42 |
predicted_class_idx = logits.argmax(-1).item()
|
| 43 |
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
| 44 |
+
```
|
| 45 |
```
|