Image Feature Extraction
Transformers
Safetensors
dinov2
Inference Endpoints
fepegar commited on
Commit
31b1baf
1 Parent(s): 453ea1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -11
README.md CHANGED
@@ -128,8 +128,6 @@ torch.Size([1, 768, 16, 16])
128
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
129
 
130
  We used images from five public, deidentified chest X-ray datasets to train this checkpoint of RAD-DINO.
131
- Images in the validation and test sets used to train [MAIRA](https://arxiv.org/abs/2311.13668) were excluded from the training set of RAD-DINO.
132
- The list of image files used for training is available at [`./training_images.csv`](./training_images.csv).
133
 
134
  | Dataset | Num. images |
135
  | --------- | ----------: |
@@ -139,7 +137,12 @@ The list of image files used for training is available at [`./training_images.cs
139
  | [PadChest](https://www.sciencedirect.com/science/article/abs/pii/S1361841520301614) | 136 787 |
140
  | [BRAX](https://www.nature.com/articles/s41597-022-01608-8) | 41 260 |
141
 
142
- Note this checkpoint is different from the one in the paper, where some private data was used.
 
 
 
 
 
143
 
144
  ### Training procedure
145
 
@@ -189,11 +192,16 @@ Our evaluation is best described in the [manuscript](https://arxiv.org/abs/2401.
189
 
190
  <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
191
 
192
- - **Hardware Type:** NVIDIA A100 GPUs
193
- - **Hours used:** 47 hours/GPU × 4 nodes × 4 GPUs/node = 752 hours
194
- - **Cloud Provider:** Azure
195
- - **Compute Region:** West US 2
196
- - **Carbon Emitted:** 65.2 kg CO₂ eq.
 
 
 
 
 
197
 
198
  ### Compute infrastructure
199
 
@@ -201,7 +209,7 @@ RAD-DINO was trained on [Azure Machine Learning](https://azure.microsoft.com/en-
201
 
202
  #### Hardware
203
 
204
- We used four `Standard_NC96ads_A100_v4` nodes with four NVIDIA A100 (80 GB) GPUs each.
205
 
206
  #### Software
207
 
@@ -216,12 +224,12 @@ We used [SimpleITK](https://simpleitk.org/) and [Pydicom](https://pydicom.github
216
 
217
  ```bibtex
218
  @article{PerezGarcia2024RADDINOES,
219
- title={{RAD-DINO}: Exploring Scalable Medical Image Encoders Beyond Text Supervision},
220
  author={Fernando Pérez-García and Harshita Sharma and Sam Bond-Taylor and Kenza Bouzid and Valentina Salvatelli and Maximilian Ilse and Shruthi Bannur and Daniel C. Castro and Anton Schwaighofer and Matthew P. Lungren and Maria Teodora Wetscherek and Noel Codella and Stephanie L. Hyland and Javier Alvarez-Valle and Ozan Oktay},
221
  journal={ArXiv},
222
  year={2024},
223
  volume={abs/2401.10815},
224
- url={https://arxiv.org/abs/2401.10815}
225
  }
226
  ```
227
 
 
128
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
129
 
130
  We used images from five public, deidentified chest X-ray datasets to train this checkpoint of RAD-DINO.
 
 
131
 
132
  | Dataset | Num. images |
133
  | --------- | ----------: |
 
137
  | [PadChest](https://www.sciencedirect.com/science/article/abs/pii/S1361841520301614) | 136 787 |
138
  | [BRAX](https://www.nature.com/articles/s41597-022-01608-8) | 41 260 |
139
 
140
+ Images in the validation and test sets used to train [MAIRA](https://arxiv.org/abs/2311.13668) were excluded from the training set of RAD-DINO.
141
+ The list of image files used for training is available at [`./training_images.csv`](./training_images.csv).
142
+
143
+ Note this checkpoint is different from the one in the paper, where some private data was used (and fewer GPUs).
144
+ The checkpoint shared here is trained for 35 000 iterations (the total number of iterations in the run was 100 000, but we selected this checkpoint using linear probing on the validation sets of the evaluation datasets described in the paper).
145
+ We used 16 nodes with 4 A100 GPUs each, and a batch size of 40 images per GPU.
146
 
147
  ### Training procedure
148
 
 
192
 
193
  <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
194
 
195
+ <!-- Hardware type: A100 PCIe -->
196
+ <!-- Hours: 1d 16h = 40h -->
197
+ <!-- Cloud provider: Azure -->
198
+ <!-- Region: Italy North -->
199
+
200
+ - **Hardware type:** NVIDIA A100 GPUs
201
+ - **Hours used:** 40 hours/GPU × 16 nodes × 4 GPUs/node = 2560 GPU-hours
202
+ - **Cloud provider:** Azure
203
+ - **Compute region:** West US 2
204
+ - **Carbon emitted:** 222 kg CO₂ eq.
205
 
206
  ### Compute infrastructure
207
 
 
209
 
210
  #### Hardware
211
 
212
+ We used 16 `Standard_NC96ads_A100_v4` nodes with four NVIDIA A100 (80 GB) GPUs each.
213
 
214
  #### Software
215
 
 
224
 
225
  ```bibtex
226
  @article{PerezGarcia2024RADDINOES,
227
+ title={RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision},
228
  author={Fernando Pérez-García and Harshita Sharma and Sam Bond-Taylor and Kenza Bouzid and Valentina Salvatelli and Maximilian Ilse and Shruthi Bannur and Daniel C. Castro and Anton Schwaighofer and Matthew P. Lungren and Maria Teodora Wetscherek and Noel Codella and Stephanie L. Hyland and Javier Alvarez-Valle and Ozan Oktay},
229
  journal={ArXiv},
230
  year={2024},
231
  volume={abs/2401.10815},
232
+ url={https://api.semanticscholar.org/CorpusID:267060839}
233
  }
234
  ```
235