Training complete
Browse files
README.md
CHANGED
|
@@ -25,16 +25,16 @@ model-index:
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
-
value: 0.
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
-
value: 0.
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
-
value: 0.
|
| 35 |
- name: Accuracy
|
| 36 |
type: accuracy
|
| 37 |
-
value: 0.
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
-
- Loss: 0.
|
| 48 |
-
- Precision: 0.
|
| 49 |
-
- Recall: 0.
|
| 50 |
-
- F1: 0.
|
| 51 |
-
- Accuracy: 0.
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
| 84 |
-
| 0.
|
| 85 |
|
| 86 |
|
| 87 |
### Framework versions
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
+
value: 0.9317129629629629
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
+
value: 0.9483338943116796
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
+
value: 0.9399499582985822
|
| 35 |
- name: Accuracy
|
| 36 |
type: accuracy
|
| 37 |
+
value: 0.9858126802849237
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 0.0617
|
| 48 |
+
- Precision: 0.9317
|
| 49 |
+
- Recall: 0.9483
|
| 50 |
+
- F1: 0.9399
|
| 51 |
+
- Accuracy: 0.9858
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 82 |
+
| 0.0789 | 1.0 | 1756 | 0.0745 | 0.9112 | 0.9366 | 0.9237 | 0.9802 |
|
| 83 |
+
| 0.0406 | 2.0 | 3512 | 0.0604 | 0.9264 | 0.9487 | 0.9374 | 0.9852 |
|
| 84 |
+
| 0.0256 | 3.0 | 5268 | 0.0617 | 0.9317 | 0.9483 | 0.9399 | 0.9858 |
|
| 85 |
|
| 86 |
|
| 87 |
### Framework versions
|