--- library_name: transformers datasets: - Helsinki-NLP/tatoeba language: - fr - en metrics: - bleu base_model: - Helsinki-NLP/opus-mt-fr-en new_version: mihdeme/mt-fr-en-tatoeba pipeline_tag: translation --- # Model Card for `mt-fr-en-tatoeba` This is a fine-tuned version of `Helsinki-NLP/opus-mt-fr-en`, trained on the **Tatoeba dataset** for French-to-English translation. ## Model Details - **Base Model:** `Helsinki-NLP/opus-mt-fr-en` - **Dataset Used:** `opus_tatoeba (French-English)` - **Fine-tuning Epochs:** 3 - **Optimizer:** AdamW (learning rate: 2e-5) - **Evaluation Metric:** BLEU Score - **Pretrained BLEU Score:** 57.5 (on Tatoeba) - **Fine-Tuned BLEU Score:** 64.43 (on Tatoeba test set, 10% random subset of tatoeba) ### Model Description - **Developed by:** Mahdi Ihdeme - **Model type:** Language model for french to english translation - **Language(s) (NLP):** English, French ## Usage ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = "mihdeme/mt-fr-en-tatoeba" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def translate(sentence): inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) print(translate("Bonjour, comment ça va ?")) ``` ## Training Configuration - **Batch Size:** 16 - **Max Sequence Length:** 512 - **Hardware Used:** Google Colab GPU (Tesla T4) ## License Apache 2.0 ## Acknowledgments Trained using Hugging Face **Transformers**. Original dataset from **Tatoeba**.