|
import threading |
|
import torch |
|
import os |
|
from flask import Flask, request, Response, jsonify |
|
from flask_cors import CORS |
|
from huggingface_hub import HfApi, login |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
|
|
tokenizer = None |
|
model = None |
|
model_loading = False |
|
model_loaded = False |
|
model_id = "microsoft/bitnet-b1.58-2B-4T" |
|
|
|
|
|
def load_model_thread(): |
|
global tokenizer, model, model_loaded, model_loading |
|
try: |
|
model_loading = True |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
print("Loading tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
print("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float32, |
|
device_map=None |
|
).to("cpu") |
|
model_loaded = True |
|
print("✅ Model loaded successfully.") |
|
except Exception as e: |
|
print(f"❌ Error loading model: {e}") |
|
finally: |
|
model_loading = False |
|
|
|
|
|
threading.Thread(target=load_model_thread, daemon=True).start() |
|
|
|
@app.route("/") |
|
def home(): |
|
return "🚀 Flask backend for BitNet is running!" |
|
|
|
@app.route("/api/health", methods=["GET"]) |
|
def health(): |
|
"""Health check endpoint""" |
|
return { |
|
"status": "ok", |
|
"model_loaded": model_loaded, |
|
"model_loading": model_loading |
|
} |
|
|
|
@app.route("/api/chat", methods=["POST"]) |
|
def chat(): |
|
"""Chat endpoint with BitNet streaming response""" |
|
global model_loaded, model, tokenizer |
|
if not model_loaded: |
|
return { |
|
"status": "initializing", |
|
"message": "Model is still loading. Please try again shortly." |
|
}, 503 |
|
try: |
|
from transformers import TextIteratorStreamer |
|
data = request.get_json() |
|
message = data.get("message", "") |
|
history = data.get("history", []) |
|
system_message = data.get("system_message", ( |
|
"You are a helpful assistant. When generating code, always wrap it in markdown code blocks (```) " |
|
"with the appropriate language identifier (e.g., ```python, ```javascript). " |
|
"Ensure proper indentation and line breaks for readability." |
|
)) |
|
max_tokens = data.get("max_tokens", 512) |
|
temperature = data.get("temperature", 0.7) |
|
top_p = data.get("top_p", 0.95) |
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, bot_msg in history: |
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") |
|
streamer = TextIteratorStreamer( |
|
tokenizer, skip_prompt=True, skip_special_tokens=True |
|
) |
|
generate_kwargs = dict( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
) |
|
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
def generate(): |
|
for new_text in streamer: |
|
yield f"data: {json.dumps({'response': new_text})}\n\n" |
|
yield "data: [DONE]\n\n" |
|
return Response(generate(), mimetype="text/event-stream") |
|
except Exception as e: |
|
print("Error during chat:", e) |
|
return {"error": str(e)}, 500 |
|
|
|
@app.route("/api/save_model", methods=["POST"]) |
|
def save_model(): |
|
"""Save model and tokenizer to Hugging Face Hub""" |
|
global model, tokenizer, model_loaded |
|
if not model_loaded: |
|
return {"error": "Model is still loading. Try again later."}, 503 |
|
try: |
|
|
|
token = request.json.get("token") |
|
if not token: |
|
return {"error": "Hugging Face token required"}, 400 |
|
login(token=token) |
|
|
|
repo_id = "mike23415/playwebit" |
|
save_directory = "/tmp/playwebit" |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
custom_model_code = """ |
|
from transformers import PreTrainedModel |
|
from transformers.models.bitnet.configuration_bitnet import BitNetConfig |
|
|
|
class BitNetForCausalLM(PreTrainedModel): |
|
config_class = BitNetConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
# Placeholder: Copy implementation from fork's modeling_bitnet.py |
|
raise NotImplementedError("Replace with actual BitNetForCausalLM implementation") |
|
|
|
def forward(self, *args, **kwargs): |
|
# Placeholder: Copy forward pass from fork |
|
raise NotImplementedError("Replace with actual forward pass implementation") |
|
""" |
|
with open(os.path.join(save_directory, "custom_bitnet.py"), "w") as f: |
|
f.write(custom_model_code) |
|
|
|
model.config.save_pretrained(save_directory) |
|
|
|
print("Saving model and tokenizer...") |
|
model.save_pretrained(save_directory, safe_serialization=True, max_shard_size="5GB") |
|
tokenizer.save_pretrained(save_directory) |
|
|
|
import json |
|
config_path = os.path.join(save_directory, "config.json") |
|
with open(config_path, "r") as f: |
|
config_json = json.load(f) |
|
config_json["architectures"] = ["BitNetForCausalLM"] |
|
with open(config_path, "w") as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
try: |
|
from transformers import TFAutoModelForCausalLM |
|
print("Converting to TensorFlow weights...") |
|
tf_model = TFAutoModelForCausalLM.from_pretrained(save_directory, from_pt=True) |
|
tf_model.save_pretrained(save_directory) |
|
print("TensorFlow weights saved.") |
|
except Exception as e: |
|
print(f"Error converting to TensorFlow: {e}") |