playwebit / app.py
mike23415's picture
Update app.py
9f3e630 verified
raw
history blame
6.28 kB
import threading
import torch
import os
from flask import Flask, request, Response, jsonify
from flask_cors import CORS
from huggingface_hub import HfApi, login
app = Flask(__name__)
CORS(app)
# Global state
tokenizer = None
model = None
model_loading = False
model_loaded = False
model_id = "microsoft/bitnet-b1.58-2B-4T"
# Load model in background
def load_model_thread():
global tokenizer, model, model_loaded, model_loading
try:
model_loading = True
from transformers import AutoTokenizer, AutoModelForCausalLM
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id)
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map=None
).to("cpu")
model_loaded = True
print("✅ Model loaded successfully.")
except Exception as e:
print(f"❌ Error loading model: {e}")
finally:
model_loading = False
# Start background model load
threading.Thread(target=load_model_thread, daemon=True).start()
@app.route("/")
def home():
return "🚀 Flask backend for BitNet is running!"
@app.route("/api/health", methods=["GET"])
def health():
"""Health check endpoint"""
return {
"status": "ok",
"model_loaded": model_loaded,
"model_loading": model_loading
}
@app.route("/api/chat", methods=["POST"])
def chat():
"""Chat endpoint with BitNet streaming response"""
global model_loaded, model, tokenizer
if not model_loaded:
return {
"status": "initializing",
"message": "Model is still loading. Please try again shortly."
}, 503
try:
from transformers import TextIteratorStreamer
data = request.get_json()
message = data.get("message", "")
history = data.get("history", [])
system_message = data.get("system_message", (
"You are a helpful assistant. When generating code, always wrap it in markdown code blocks (```) "
"with the appropriate language identifier (e.g., ```python, ```javascript). "
"Ensure proper indentation and line breaks for readability."
))
max_tokens = data.get("max_tokens", 512)
temperature = data.get("temperature", 0.7)
top_p = data.get("top_p", 0.95)
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
def generate():
for new_text in streamer:
yield f"data: {json.dumps({'response': new_text})}\n\n"
yield "data: [DONE]\n\n"
return Response(generate(), mimetype="text/event-stream")
except Exception as e:
print("Error during chat:", e)
return {"error": str(e)}, 500
@app.route("/api/save_model", methods=["POST"])
def save_model():
"""Save model and tokenizer to Hugging Face Hub"""
global model, tokenizer, model_loaded
if not model_loaded:
return {"error": "Model is still loading. Try again later."}, 503
try:
# Authenticate with Hugging Face
token = request.json.get("token")
if not token:
return {"error": "Hugging Face token required"}, 400
login(token=token)
# Define repository
repo_id = "mike23415/playwebit"
save_directory = "/tmp/playwebit"
# Create temporary directory
os.makedirs(save_directory, exist_ok=True)
# Save custom model class (replace with actual implementation)
custom_model_code = """
from transformers import PreTrainedModel
from transformers.models.bitnet.configuration_bitnet import BitNetConfig
class BitNetForCausalLM(PreTrainedModel):
config_class = BitNetConfig
def __init__(self, config):
super().__init__(config)
# Placeholder: Copy implementation from fork's modeling_bitnet.py
raise NotImplementedError("Replace with actual BitNetForCausalLM implementation")
def forward(self, *args, **kwargs):
# Placeholder: Copy forward pass from fork
raise NotImplementedError("Replace with actual forward pass implementation")
"""
with open(os.path.join(save_directory, "custom_bitnet.py"), "w") as f:
f.write(custom_model_code)
# Save configuration
model.config.save_pretrained(save_directory)
# Save model and tokenizer
print("Saving model and tokenizer...")
model.save_pretrained(save_directory, safe_serialization=True, max_shard_size="5GB")
tokenizer.save_pretrained(save_directory)
# Update config.json to reference custom class
import json
config_path = os.path.join(save_directory, "config.json")
with open(config_path, "r") as f:
config_json = json.load(f)
config_json["architectures"] = ["BitNetForCausalLM"]
with open(config_path, "w") as f:
json.dump(config_json, f, indent=2)
# Try TensorFlow conversion
try:
from transformers import TFAutoModelForCausalLM
print("Converting to TensorFlow weights...")
tf_model = TFAutoModelForCausalLM.from_pretrained(save_directory, from_pt=True)
tf_model.save_pretrained(save_directory)
print("TensorFlow weights saved.")
except Exception as e:
print(f"Error converting to TensorFlow: {e}")