Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from flask import Flask, request, Response, jsonify
|
5 |
+
from flask_cors import CORS
|
6 |
+
from huggingface_hub import HfApi, login
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
CORS(app)
|
10 |
+
|
11 |
+
# Global state
|
12 |
+
tokenizer = None
|
13 |
+
model = None
|
14 |
+
model_loading = False
|
15 |
+
model_loaded = False
|
16 |
+
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
17 |
+
|
18 |
+
# Load model in background
|
19 |
+
def load_model_thread():
|
20 |
+
global tokenizer, model, model_loaded, model_loading
|
21 |
+
try:
|
22 |
+
model_loading = True
|
23 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
24 |
+
print("Loading tokenizer...")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
+
print("Loading model...")
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
torch_dtype=torch.float32,
|
30 |
+
device_map=None
|
31 |
+
).to("cpu")
|
32 |
+
model_loaded = True
|
33 |
+
print("✅ Model loaded successfully.")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"❌ Error loading model: {e}")
|
36 |
+
finally:
|
37 |
+
model_loading = False
|
38 |
+
|
39 |
+
# Start background model load
|
40 |
+
threading.Thread(target=load_model_thread, daemon=True).start()
|
41 |
+
|
42 |
+
@app.route("/")
|
43 |
+
def home():
|
44 |
+
return "🚀 Flask backend for BitNet is running!"
|
45 |
+
|
46 |
+
@app.route("/api/health", methods=["GET"])
|
47 |
+
def health():
|
48 |
+
"""Health check endpoint"""
|
49 |
+
return {
|
50 |
+
"status": "ok",
|
51 |
+
"model_loaded": model_loaded,
|
52 |
+
"model_loading": model_loading
|
53 |
+
}
|
54 |
+
|
55 |
+
@app.route("/api/chat", methods=["POST"])
|
56 |
+
def chat():
|
57 |
+
"""Chat endpoint with BitNet streaming response"""
|
58 |
+
global model_loaded, model, tokenizer
|
59 |
+
|
60 |
+
if not model_loaded:
|
61 |
+
return {
|
62 |
+
"status": "initializing",
|
63 |
+
"message": "Model is still loading. Please try again shortly."
|
64 |
+
}, 503
|
65 |
+
|
66 |
+
try:
|
67 |
+
from transformers import TextIteratorStreamer
|
68 |
+
data = request.get_json()
|
69 |
+
message = data.get("message", "")
|
70 |
+
history = data.get("history", [])
|
71 |
+
system_message = data.get("system_message", (
|
72 |
+
"You are a helpful assistant. When generating code, always wrap it in markdown code blocks (```) "
|
73 |
+
"with the appropriate language identifier (e.g., ```python, ```javascript). "
|
74 |
+
"Ensure proper indentation and line breaks for readability."
|
75 |
+
))
|
76 |
+
max_tokens = data.get("max_tokens", 512)
|
77 |
+
temperature = data.get("temperature", 0.7)
|
78 |
+
top_p = data.get("top_p", 0.95)
|
79 |
+
|
80 |
+
messages = [{"role": "system", "content": system_message}]
|
81 |
+
for user_msg, bot_msg in history:
|
82 |
+
messages.append({"role": "user", "content": user_msg})
|
83 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
84 |
+
messages.append({"role": "user", "content": message})
|
85 |
+
|
86 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
87 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
88 |
+
|
89 |
+
streamer = TextIteratorStreamer(
|
90 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
91 |
+
)
|
92 |
+
|
93 |
+
generate_kwargs = dict(
|
94 |
+
**inputs,
|
95 |
+
streamer=streamer,
|
96 |
+
max_new_tokens=max_tokens,
|
97 |
+
temperature=temperature,
|
98 |
+
top_p=top_p,
|
99 |
+
do_sample=True,
|
100 |
+
)
|
101 |
+
|
102 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
103 |
+
thread.start()
|
104 |
+
|
105 |
+
def generate():
|
106 |
+
for new_text in streamer:
|
107 |
+
yield f"data: {json.dumps({'response': new_text})}\n\n"
|
108 |
+
yield "data: [DONE]\n\n"
|
109 |
+
|
110 |
+
return Response(generate(), mimetype="text/event-stream")
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
print("Error during chat:", e)
|
114 |
+
return {"error": str(e)}, 500
|
115 |
+
|
116 |
+
@app.route("/api/save_model", methods=["POST"])
|
117 |
+
def save_model():
|
118 |
+
"""Save model and tokenizer to Hugging Face Hub"""
|
119 |
+
global model, tokenizer, model_loaded
|
120 |
+
|
121 |
+
if not model_loaded:
|
122 |
+
return {"error": "Model is still loading. Try again later."}, 503
|
123 |
+
|
124 |
+
try:
|
125 |
+
# Authenticate with Hugging Face
|
126 |
+
token = request.json.get("token")
|
127 |
+
if not token:
|
128 |
+
return {"error": "Hugging Face token required"}, 400
|
129 |
+
login(token=token)
|
130 |
+
|
131 |
+
# Define repository
|
132 |
+
repo_id = "priyanshu/playwebit"
|
133 |
+
save_directory = "/tmp/playwebit"
|
134 |
+
|
135 |
+
# Create temporary directory
|
136 |
+
os.makedirs(save_directory, exist_ok=True)
|
137 |
+
|
138 |
+
# Save custom model class (replace with actual implementation)
|
139 |
+
custom_model_code = """
|
140 |
+
from transformers import PreTrainedModel
|
141 |
+
from transformers.models.bitnet.configuration_bitnet import BitNetConfig
|
142 |
+
|
143 |
+
class BitNetForCausalLM(PreTrainedModel):
|
144 |
+
config_class = BitNetConfig
|
145 |
+
|
146 |
+
def __init__(self, config):
|
147 |
+
super().__init__(config)
|
148 |
+
# Placeholder: Copy implementation from fork's modeling_bitnet.py
|
149 |
+
raise NotImplementedError("Replace with actual BitNetForCausalLM implementation")
|
150 |
+
|
151 |
+
def forward(self, *args, **kwargs):
|
152 |
+
# Placeholder: Copy forward pass from fork
|
153 |
+
raise NotImplementedError("Replace with actual forward pass implementation")
|
154 |
+
"""
|
155 |
+
with open(os.path.join(save_directory, "custom_bitnet.py"), "w") as f:
|
156 |
+
f.write(custom_model_code)
|
157 |
+
|
158 |
+
# Save configuration
|
159 |
+
model.config.save_pretrained(save_directory)
|
160 |
+
|
161 |
+
# Save model and tokenizer
|
162 |
+
print("Saving model and tokenizer...")
|
163 |
+
model.save_pretrained(save_directory, safe_serialization=True, max_shard_size="5GB")
|
164 |
+
tokenizer.save_pretrained(save_directory)
|
165 |
+
|
166 |
+
# Update config.json to reference custom class
|
167 |
+
import json
|
168 |
+
config_path = os.path.join(save_directory, "config.json")
|
169 |
+
with open(config_path, "r") as f:
|
170 |
+
config_json = json.load(f)
|
171 |
+
config_json["architectures"] = ["BitNetForCausalLM"]
|
172 |
+
with open(config_path, "w") as f:
|
173 |
+
json.dump(config_json, f, indent=2)
|
174 |
+
|
175 |
+
# Try TensorFlow conversion
|
176 |
+
try:
|
177 |
+
from transformers import TFAutoModelForCausalLM
|
178 |
+
print("Converting to TensorFlow weights...")
|
179 |
+
tf_model = TFAutoModelForCausalLM.from_pretrained(save_directory, from_pt=True)
|
180 |
+
tf_model.save_pretrained(save_directory)
|
181 |
+
print("TensorFlow weights saved.")
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Error converting to TensorFlow: {e}")
|
184 |
+
|
185 |
+
# Upload to Hugging Face Hub
|
186 |
+
api = HfApi()
|
187 |
+
print(f"Uploading to {repo_id}...")
|
188 |
+
api.upload_folder(
|
189 |
+
folder_path=save_directory,
|
190 |
+
repo_id=repo_id,
|
191 |
+
repo_type="model",
|
192 |
+
commit_message="Upload PlayWeBit model, tokenizer, and custom class"
|
193 |
+
)
|
194 |
+
|
195 |
+
return {"message": f"Model uploaded to https://huggingface.co/{repo_id}"}
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
print("Error saving model:", e)
|
199 |
+
return {"error": str(e)}, 500
|
200 |
+
|
201 |
+
if __name__ == "__main__":
|
202 |
+
app.run(host="0.0.0.0", port=7860)
|