from transformers import PreTrainedModel, PretrainedConfig import torch import torch.nn as nn # BitNetConfig (replace with contents of configuration_bitnet.py) class BitNetConfig(PretrainedConfig): model_type = "bitnet" def __init__( self, vocab_size=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs ) # BitNetForCausalLM (replace with contents of modeling_bitnet.py) class BitNetForCausalLM(PreTrainedModel): config_class = BitNetConfig def __init__(self, config): super().__init__(config) # Placeholder: Replace with actual implementation # Example structure (based on typical transformer models): self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([ # Add BitNet-specific layers (e.g., BitNetLayer) nn.TransformerEncoderLayer( d_model=config.hidden_size, nhead=config.num_attention_heads, dim_feedforward=config.intermediate_size, dropout=config.dropout ) for _ in range(config.num_hidden_layers) ]) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) def forward(self, input_ids, attention_mask=None, labels=None, **kwargs): # Placeholder: Replace with actual forward pass hidden_states = self.embed_tokens(input_ids) for layer in self.layers: hidden_states = layer(hidden_states) hidden_states = self.norm(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) return {"logits": logits, "loss": loss} if loss is not None else {"logits": logits} def prepare_inputs_for_generation(self, input_ids, **kwargs): return {"input_ids": input_ids, **kwargs}