--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: electra-base-gen-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.5024 - name: F1 type: f1 value: 0.5063190059782597 - name: Precision type: precision value: 0.5121183330982292 - name: Recall type: recall value: 0.5024 --- # electra-base-gen-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-base-generator](https://huggingface.co/mrm8488/electricidad-base-generator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.8030 - Accuracy: 0.5024 - F1: 0.5063 - Precision: 0.5121 - Recall: 0.5024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.5135 | 1.0 | 1000 | 0.4886 | 0.4929 | 1.6580 | 0.5077 | 0.4886 | | 0.4138 | 2.0 | 2000 | 0.5044 | 0.5093 | 1.7951 | 0.5183 | 0.5044 | | 0.4244 | 3.0 | 3000 | 0.5022 | 0.5068 | 1.8108 | 0.5141 | 0.5022 | | 0.4231 | 6.0 | 6000 | 1.7636 | 0.4972 | 0.5018 | 0.5092 | 0.4972 | | 0.3574 | 7.0 | 7000 | 1.8030 | 0.5024 | 0.5063 | 0.5121 | 0.5024 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3