--- library_name: peft license: other base_model: minpeter/HCX-SEED-FC-3B tags: - axolotl - generated_from_trainer datasets: - minpeter/xlam-function-calling-60k-hermes - minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes - minpeter/hermes-function-calling-v1-jsonl - minpeter/hermes-function-calling-v1-jsonl model-index: - name: LoRA-HCX-3b-sf-xlam-00 results: [] --- ## Comparison Table of Test Results by Model (BFCL) | Test Item | base Model Score | tool Model Score | Score Difference (tool - base) | |-------------------|------------------|------------------|--------------------------------| | irrelevance | 0.4333 | 0.8708 | +0.4375 | | multi_turn_base | 0.0100 | 0.0400 | +0.0300 | | parallel_multiple | 0.4750 | 0.7550 | +0.2800 | | parallel | 0.5200 | 0.7600 | +0.2400 | | simple | 0.7575 | 0.7975 | +0.0400 | | multiple | 0.7650 | 0.8050 | +0.0400 | [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: minpeter/HCX-SEED-FC-3B hub_model_id: minpeter/LoRA-HCX-3b-sf-xlam-00 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: minpeter/xlam-function-calling-60k-hermes data_files: - result.parquet type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 120 - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes data_files: - result.parquet type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 15 - path: minpeter/hermes-function-calling-v1-jsonl data_files: - func-calling-singleturn.jsonl - func-calling.jsonl type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 3 - path: minpeter/hermes-function-calling-v1-jsonl data_files: - glaive-function-calling-5k.jsonl type: chat_template roles_to_train: ["assistant"] field_messages: conversations message_property_mappings: role: from content: value shards: 5 chat_template: chatml dataset_prepared_path: last_run_prepared output_dir: ./output adapter: lora lora_model_dir: sequence_len: 20000 pad_to_sequence_len: true sample_packing: true val_set_size: 0.05 eval_sample_packing: true evals_per_epoch: 3 lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<|im_start|>" eos_token: "<|im_end|>" pad_token: "<|endoftext|>" ```

# LoRA-HCX-3b-sf-xlam-00 This model is a fine-tuned version of [minpeter/HCX-SEED-FC-3B](https://huggingface.co/minpeter/HCX-SEED-FC-3B) on the minpeter/xlam-function-calling-60k-hermes, the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes, the minpeter/hermes-function-calling-v1-jsonl and the minpeter/hermes-function-calling-v1-jsonl datasets. It achieves the following results on the evaluation set: - Loss: 0.3603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8224 | 0.0215 | 1 | 0.7483 | | 0.4965 | 0.3441 | 16 | 0.4406 | | 0.5057 | 0.6882 | 32 | 0.3911 | | 0.4464 | 1.0215 | 48 | 0.3737 | | 0.4376 | 1.3656 | 64 | 0.3651 | | 0.3833 | 1.7097 | 80 | 0.3603 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1