--- language: - en license: apache-2.0 inference: false tags: - text-classification - onnx - int8 - optimum - ONNXRuntime --- # LLM agent flow text classification This model identifies common LLM agent events and patterns within the conversation flow. Such events include an apology, where the LLM acknowledges a mistake. The flow labels can serve as foundational elements for sophisticated LLM analytics. It is ONNX quantized and is a fined-tune of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large). The base model can be found [here](https://huggingface.co/minuva/MiniLMv2-agentflow-v2) This model is *only* for the LLM agent texts in the dialog. For the user texts [use this model](https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx/). # Optimum ## Installation Install from source: ```bash python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git ``` ## Run the Model ```py from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', provider="CPUExecutionProvider") tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length') pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, ) texts = ["My apologies", "Im not sure what you mean"] pipe(texts) # [{'label': 'agent_apology_error_mistake', 'score': 0.9967106580734253}, # {'label': 'agent_didnt_understand', 'score': 0.9975798726081848}] ``` # ONNX Runtime only A lighter solution for deployment ## Installation ```bash pip install tokenizers pip install onnxruntime git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx ``` ## Run the Model ```py import os import numpy as np import json from tokenizers import Tokenizer from onnxruntime import InferenceSession model_name = "minuva/MiniLMv2-agentflow-v2-onnx" tokenizer = Tokenizer.from_pretrained(model_name) tokenizer.enable_padding( pad_token="", pad_id=1, ) tokenizer.enable_truncation(max_length=256) batch_size = 16 texts = ["thats my mistake"] outputs = [] model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider']) with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f: config = json.load(f) output_names = [output.name for output in model.get_outputs()] input_names = [input.name for input in model.get_inputs()] for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1): encodings = tokenizer.encode_batch(list(subtexts)) inputs = { "input_ids": np.vstack( [encoding.ids for encoding in encodings], ), "attention_mask": np.vstack( [encoding.attention_mask for encoding in encodings], ), "token_type_ids": np.vstack( [encoding.type_ids for encoding in encodings], ), } for input_name in input_names: if input_name not in inputs: raise ValueError(f"Input name {input_name} not found in inputs") inputs = {input_name: inputs[input_name] for input_name in input_names} output = np.squeeze( np.stack( model.run(output_names=output_names, input_feed=inputs) ), axis=0, ) outputs.append(output) outputs = np.concatenate(outputs, axis=0) scores = 1 / (1 + np.exp(-outputs)) results = [] for item in scores: labels = [] scores = [] for idx, s in enumerate(item): labels.append(config["id2label"][str(idx)]) scores.append(float(s)) results.append({"labels": labels, "scores": scores}) res = [] for result in results: joined = list(zip(result['labels'], result['scores'])) max_score = max(joined, key=lambda x: x[1]) res.append(max_score) res # [('agent_apology_error_mistake', 0.9991968274116516), # ('agent_didnt_understand', 0.9993669390678406)] ``` # Categories Explanation
Click to expand! - OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed. - agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request. - agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user. - agent_didnt_understand: Indicates that the agent did not understand the user's request or question. - agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information. - agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations. - image_limitations": The agent points out limitations related to handling or interpreting images. - no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question. - success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed.

# Metrics in our private test dataset | Model (params) | Loss | Accuracy | F1 | |--------------------|-------------|----------|--------| | minuva/MiniLMv2-agentflow-v2 (33M) | 0.1462 | 0.9616 | 0.9618 | | minuva/MiniLMv2-agentflow-v2-onnx (33M) | - | 0.9624 | 0.9626 | # Deployment Check our [llm-flow-classification repository](https://github.com/minuva/llm-flow-classification) for a FastAPI and ONNX based server to deploy this model on CPU devices.