minyong commited on
Commit
434c63d
·
verified ·
1 Parent(s): f78dfcf

Model save

Browse files
Files changed (2) hide show
  1. KETI_b1_s4_e3_training_log.log +1 -0
  2. README.md +58 -0
KETI_b1_s4_e3_training_log.log CHANGED
@@ -228,3 +228,4 @@
228
  04/02/2025 01:26:12 - INFO - >> GPU 5: 73.18 GB used
229
  04/02/2025 01:26:12 - INFO - >> Total GPU Memory Used: 449.91 GB
230
  04/02/2025 01:26:12 - INFO - >> Total GPU Power Consumption: 525.56 W
 
 
228
  04/02/2025 01:26:12 - INFO - >> GPU 5: 73.18 GB used
229
  04/02/2025 01:26:12 - INFO - >> Total GPU Memory Used: 449.91 GB
230
  04/02/2025 01:26:12 - INFO - >> Total GPU Power Consumption: 525.56 W
231
+ 04/02/2025 01:27:03 - INFO - ✅ Training completed in 945.87 seconds (0.26 hours)
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-27b-pt
3
+ library_name: transformers
4
+ model_name: 20250402_010937_gemma-3-27b-pt_LoRA
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for 20250402_010937_gemma-3-27b-pt_LoRA
13
+
14
+ This model is a fine-tuned version of [google/gemma-3-27b-pt](https://huggingface.co/google/gemma-3-27b-pt).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="minyong/20250402_010937_gemma-3-27b-pt_LoRA", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.50.0
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.1.0
41
+ - Tokenizers: 0.21.1
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```