Model save
Browse files- KETI_b1_s4_e3_training_log.log +1 -0
- README.md +58 -0
KETI_b1_s4_e3_training_log.log
CHANGED
@@ -228,3 +228,4 @@
|
|
228 |
04/02/2025 01:26:12 - INFO - >> GPU 5: 73.18 GB used
|
229 |
04/02/2025 01:26:12 - INFO - >> Total GPU Memory Used: 449.91 GB
|
230 |
04/02/2025 01:26:12 - INFO - >> Total GPU Power Consumption: 525.56 W
|
|
|
|
228 |
04/02/2025 01:26:12 - INFO - >> GPU 5: 73.18 GB used
|
229 |
04/02/2025 01:26:12 - INFO - >> Total GPU Memory Used: 449.91 GB
|
230 |
04/02/2025 01:26:12 - INFO - >> Total GPU Power Consumption: 525.56 W
|
231 |
+
04/02/2025 01:27:03 - INFO - ✅ Training completed in 945.87 seconds (0.26 hours)
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/gemma-3-27b-pt
|
3 |
+
library_name: transformers
|
4 |
+
model_name: 20250402_010937_gemma-3-27b-pt_LoRA
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for 20250402_010937_gemma-3-27b-pt_LoRA
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [google/gemma-3-27b-pt](https://huggingface.co/google/gemma-3-27b-pt).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="minyong/20250402_010937_gemma-3-27b-pt_LoRA", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0
|
38 |
+
- Transformers: 4.50.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.1.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|