--- library_name: transformers license: mit base_model: dslim/bert-base-NER tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-wnut17-optimized results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5794655414908579 - name: Recall type: recall value: 0.3818350324374421 - name: F1 type: f1 value: 0.46033519553072627 - name: Accuracy type: accuracy value: 0.9485338120885697 --- # bert-wnut17-optimized This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2901 - Precision: 0.5795 - Recall: 0.3818 - F1: 0.4603 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.631245451057452e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2365 | 0.5265 | 0.4235 | 0.4694 | 0.9478 | | No log | 2.0 | 426 | 0.2692 | 0.5710 | 0.3689 | 0.4482 | 0.9480 | | 0.2086 | 3.0 | 639 | 0.2901 | 0.5795 | 0.3818 | 0.4603 | 0.9485 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0