|
import collections |
|
import collections.abc |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union, cast |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchaudio.transforms as audio_transforms |
|
from torch import Tensor |
|
from transformers import GenerationMixin, PreTrainedModel |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import ( |
|
Qwen2_5OmniTextConfig, |
|
) |
|
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import ( |
|
Qwen2_5OmniThinkerTextModel, |
|
) |
|
from transformers.utils import can_return_tuple |
|
|
|
from .configuration_midashenglm import DashengConfig, MiDashengLMConfig |
|
|
|
_Tuple2 = Union[int, Tuple[int, int], Sequence[int]] |
|
|
|
|
|
def _resolve_tuple2(x: _Tuple2) -> Tuple[int, int]: |
|
if isinstance(x, collections.abc.Sequence): |
|
assert len(x) == 2, ( |
|
f"Expected a sequence of length 2, got {x} with length {len(x)}" |
|
) |
|
return cast(Tuple[int, int], tuple(x)) |
|
return (x, x) |
|
|
|
|
|
class AudioPatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
input_size: _Tuple2 = 64, |
|
patch_size: _Tuple2 = 16, |
|
patch_stride: _Tuple2 = 16, |
|
in_chans: int = 1, |
|
embed_dim: int = 768, |
|
norm_layer: Optional[Callable] = None, |
|
flatten: bool = False, |
|
): |
|
super().__init__() |
|
self.input_size = _resolve_tuple2(input_size) |
|
self.patch_size = _resolve_tuple2(patch_size) |
|
self.patch_stride = _resolve_tuple2(patch_stride) |
|
self.grid_size = ( |
|
self.input_size[0] // self.patch_stride[0], |
|
self.input_size[1] // self.patch_stride[1], |
|
) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, |
|
embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_stride, |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = torch.permute( |
|
torch.flatten(x, 2, 3), (0, 2, 1) |
|
) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class DashengMlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: Optional[int] = None, |
|
out_features: Optional[int] = None, |
|
drop: float = 0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = nn.GELU() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class DashengAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
causal: bool = False, |
|
): |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.causal = causal |
|
|
|
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None): |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.causal: |
|
mask_value = -torch.finfo(attn.dtype).max |
|
i, j = attn.shape[-2:] |
|
mask = torch.ones(i, j, device=q.device, dtype=torch.bool).triu(j - i + 1) |
|
attn = attn.masked_fill(mask, mask_value) |
|
if mask is not None: |
|
|
|
mask_value = torch.finfo(attn.dtype).min |
|
|
|
attn_mask = mask[:, None, None, :].expand(B, 1, N, N) |
|
|
|
|
|
attn = attn.masked_fill(attn_mask, mask_value) |
|
attn = attn.softmax(dim=-1) |
|
attn = torch.nan_to_num(attn) |
|
|
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class DashengBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
drop: float = 0.0, |
|
attn_drop: float = 0.0, |
|
init_values: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(dim, eps=1e-6) |
|
self.attn = DashengAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.ls1 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
|
|
self.norm2 = nn.LayerNorm(dim, eps=1e-6) |
|
self.mlp = DashengMlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
drop=drop, |
|
) |
|
self.ls2 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
|
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
x = x + self.ls1(self.attn(self.norm1(x), mask)) |
|
x = x + self.ls2(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class DashengAudioTransformer(PreTrainedModel): |
|
config_class = DashengConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: DashengConfig): |
|
super().__init__(config) |
|
|
|
self.target_length = config.target_length |
|
self.embed_dim = config.embed_dim |
|
self.hop_length = config.hop_length |
|
self.gradient_checkpointing = False |
|
|
|
self.front_end = nn.Sequential( |
|
audio_transforms.MelSpectrogram( |
|
f_min=config.f_min, |
|
f_max=config.f_max, |
|
center=config.center, |
|
win_length=config.win_length, |
|
hop_length=config.hop_length, |
|
sample_rate=config.sample_rate, |
|
n_fft=config.n_fft, |
|
n_mels=config.n_mels, |
|
), |
|
audio_transforms.AmplitudeToDB(top_db=120), |
|
) |
|
|
|
self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01) |
|
|
|
self.patch_embed = AudioPatchEmbed( |
|
input_size=(config.n_mels, config.target_length), |
|
embed_dim=config.embed_dim, |
|
in_chans=config.input_channels, |
|
patch_size=config.patch_size, |
|
flatten=False, |
|
patch_stride=config.patch_stride, |
|
) |
|
|
|
self.time_pos_embed = nn.Parameter( |
|
torch.randn(1, config.embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02 |
|
) |
|
self.freq_pos_embed = nn.Parameter( |
|
torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02 |
|
) |
|
|
|
self.pos_drop = nn.Dropout(p=config.drop_rate) |
|
self.blocks = nn.ModuleList( |
|
DashengBlock( |
|
dim=config.embed_dim, |
|
num_heads=config.num_heads, |
|
mlp_ratio=config.mlp_ratio, |
|
qkv_bias=config.qkv_bias, |
|
init_values=config.init_values, |
|
drop=config.drop_rate, |
|
attn_drop=config.attn_drop_rate, |
|
) |
|
for i in range(config.depth) |
|
) |
|
self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6) |
|
|
|
self.post_init() |
|
|
|
def forward_features( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
t = x.shape[-1] |
|
x = x + self.time_pos_embed[:, :, :, :t] |
|
x = ( |
|
x + self.freq_pos_embed[:, :, :, :] |
|
) |
|
x = torch.permute( |
|
torch.flatten(x, 2, 3), (0, 2, 1) |
|
) |
|
x = self.pos_drop(x) |
|
for block in self.blocks: |
|
if self.gradient_checkpointing and self.training: |
|
x = self._gradient_checkpointing_func(block, x, mask) |
|
else: |
|
x = block(x, mask) |
|
x = self.norm(x) |
|
return x |
|
|
|
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor: |
|
batch_size = len(lengths) |
|
idx = torch.arange(max_length, device=lengths.device) |
|
idx = idx.repeat(batch_size).view(batch_size, max_length) |
|
mask = (idx < lengths.unsqueeze(-1)).bool() |
|
return mask |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_length: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
x = self.front_end(x) |
|
target_length_in_patches = self.target_length // 4 |
|
x = x.unsqueeze(1) |
|
x = torch.permute(x, (0, 2, 1, 3)) |
|
x = self.init_bn(x) |
|
x = torch.permute(x, (0, 2, 1, 3)) |
|
|
|
x = self.patch_embed(x) |
|
t = x.shape[-1] |
|
|
|
input_splits = x.split(target_length_in_patches, dim=-1) |
|
|
|
if x_length is not None: |
|
assert len(x_length) == len(x), ( |
|
"batchsizes of input x and x_length need to be same" |
|
) |
|
assert x_length.ndim == 1, "Lengths are of size (B,)" |
|
scaled_lengths = (x_length / (self.hop_length * 4)).long() |
|
mask = self._to_mask(max_length=t, lengths=scaled_lengths) |
|
split_masks = mask.logical_not().split(target_length_in_patches, dim=-1) |
|
else: |
|
mask = None |
|
split_masks = [None] * len(input_splits) |
|
|
|
outputs = [] |
|
|
|
for split_x, split_mask in zip(input_splits, split_masks): |
|
forward_kwargs = {} |
|
forward_kwargs["mask"] = split_mask |
|
split_x = self.forward_features(split_x, **forward_kwargs) |
|
outputs.append(split_x) |
|
x = torch.cat(outputs, dim=1) |
|
return x, mask |
|
|
|
|
|
class AudioProjectorSubsample(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
downsample_rate=5, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
super().__init__() |
|
self.k = downsample_rate |
|
self.net = nn.Sequential( |
|
nn.Linear(in_dim * self.k, out_dim, dtype=dtype), |
|
nn.GELU(), |
|
nn.Linear(out_dim, out_dim, dtype=dtype), |
|
) |
|
|
|
def forward(self, x, mask=None): |
|
batch_size, seq_len, dim = x.shape |
|
num_frames_to_discard = seq_len % self.k |
|
if num_frames_to_discard > 0: |
|
x = x[:, :-num_frames_to_discard, :] |
|
if mask is not None: |
|
mask = mask[:, :-num_frames_to_discard] |
|
if mask is None: |
|
mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device) |
|
x = x.reshape( |
|
batch_size, -1, self.k * dim |
|
) |
|
x = self.net(x) |
|
mask = mask.reshape( |
|
batch_size, -1, self.k |
|
) |
|
mask = mask.any(dim=-1).long() |
|
return x, mask |
|
|
|
|
|
@dataclass |
|
class Qwen25OmniTextModelOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Cache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin): |
|
config_class = Qwen2_5OmniTextConfig |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def __init__(self, config: Qwen2_5OmniTextConfig): |
|
super().__init__(config) |
|
self.model = Qwen2_5OmniThinkerTextModel._from_config(config) |
|
self.lm_head = nn.Linear( |
|
config.hidden_size, |
|
config.vocab_size, |
|
bias=False, |
|
) |
|
self.post_init() |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, Qwen25OmniTextModelOutput]: |
|
if attention_mask is not None and position_ids is None: |
|
position_ids = ( |
|
attention_mask.long() |
|
.cumsum(dim=-1) |
|
.masked_fill_(attention_mask == 0, 1) |
|
- 1 |
|
) |
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
return_dict=True, |
|
) |
|
hidden_states = outputs.last_hidden_state |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = ( |
|
self.loss_function( |
|
logits=logits, |
|
labels=labels, |
|
vocab_size=self.config.vocab_size, |
|
**kwargs, |
|
) |
|
if labels is not None |
|
else None |
|
) |
|
|
|
return Qwen25OmniTextModelOutput( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class MiDashengLMModel(PreTrainedModel): |
|
config_class = MiDashengLMConfig |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: MiDashengLMConfig): |
|
super().__init__(config) |
|
|
|
self.audio_token_id = config.audio_token_id |
|
|
|
self.audio_encoder = DashengAudioTransformer._from_config( |
|
config.audio_encoder_config, |
|
) |
|
self.audio_projector = AudioProjectorSubsample( |
|
self.audio_encoder.embed_dim, |
|
config.text_config.hidden_size, |
|
config.subsample_factor, |
|
) |
|
self.decoder = Qwen25OmniThinkerTextOnlyDecoder._from_config( |
|
config.text_config, |
|
attn_implementation=config._attn_implementation, |
|
) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.decoder.model.embed_tokens |
|
|
|
def get_output_embeddings(self): |
|
return self.decoder.lm_head |
|
|
|
def _forward_audio_encoder( |
|
self, |
|
audios: torch.Tensor, |
|
audio_length: Optional[Iterable[int]], |
|
) -> torch.Tensor: |
|
encoder_out, encoder_atts = self.audio_encoder(audios, audio_length) |
|
|
|
|
|
encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts) |
|
|
|
return encoder_out |
|
|
|
def _prepare_inputs_embeds( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
input_values: Optional[torch.Tensor], |
|
inputs_embeds: Optional[torch.Tensor], |
|
audio_length: Optional[Iterable[int]] = None, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
if inputs_embeds is not None: |
|
raise ValueError( |
|
"Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them." |
|
) |
|
inputs_embeds = cast( |
|
torch.Tensor, self.decoder.model.embed_tokens(input_ids) |
|
) |
|
|
|
if input_values is not None: |
|
if self.audio_token_id is None: |
|
raise ValueError( |
|
"Audio input is provided, but `audio_token_id` is not configured." |
|
) |
|
|
|
audio_embeddings = self._forward_audio_encoder( |
|
input_values, |
|
audio_length=audio_length, |
|
).to(inputs_embeds.dtype) |
|
|
|
audio_mask = (input_ids == self.audio_token_id).flatten() |
|
diff = torch.diff( |
|
audio_mask.long(), |
|
prepend=torch.zeros( |
|
(1,), |
|
dtype=torch.long, |
|
device=audio_mask.device, |
|
), |
|
) |
|
audio_span_starts = (diff == 1).nonzero() |
|
audio_span_ends = (diff == -1).nonzero() |
|
|
|
embeds_view = inputs_embeds.view(-1, inputs_embeds.shape[-1]) |
|
for span_start, span_end, audio in zip( |
|
audio_span_starts, |
|
audio_span_ends, |
|
audio_embeddings, |
|
strict=True, |
|
): |
|
embeds_view[span_start:span_end] = audio[: span_end - span_start] |
|
else: |
|
if inputs_embeds is None: |
|
raise ValueError( |
|
"Either `input_ids` or `inputs_embeds` must be passed." |
|
) |
|
if input_values is not None: |
|
raise ValueError( |
|
"Cannot pass `input_values` when `inputs_embeds` is provided." |
|
) |
|
|
|
return inputs_embeds |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[Tensor] = None, |
|
input_values: Optional[Tensor] = None, |
|
inputs_embeds: Optional[Tensor] = None, |
|
audio_length: Optional[Iterable[int]] = None, |
|
attention_mask: Optional[Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
**kwargs: Any, |
|
): |
|
inputs_embeds = self._prepare_inputs_embeds( |
|
input_ids=input_ids, |
|
input_values=input_values, |
|
inputs_embeds=inputs_embeds, |
|
audio_length=audio_length, |
|
) |
|
return self.decoder( |
|
input_ids=None, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
labels=labels, |
|
**kwargs, |
|
) |
|
|
|
def generate( |
|
self, |
|
input_ids: Optional[Tensor] = None, |
|
input_values: Optional[Tensor] = None, |
|
inputs_embeds: Optional[Tensor] = None, |
|
audio_length: Optional[Iterable[int]] = None, |
|
**kwargs, |
|
): |
|
inputs_embeds = self._prepare_inputs_embeds( |
|
input_ids=input_ids, |
|
input_values=input_values, |
|
inputs_embeds=inputs_embeds, |
|
audio_length=audio_length, |
|
) |
|
return self.decoder.generate( |
|
inputs_embeds=inputs_embeds, |
|
generation_config=kwargs.pop("generation_config", self.generation_config), |
|
**kwargs, |
|
) |
|
|