Rename README.md to app.py
Browse files
README.md
DELETED
|
@@ -1,143 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
tags:
|
| 4 |
-
- finetuned
|
| 5 |
-
base_model: mistralai/Mistral-7B-v0.1
|
| 6 |
-
pipeline_tag: text-generation
|
| 7 |
-
inference: true
|
| 8 |
-
widget:
|
| 9 |
-
- messages:
|
| 10 |
-
- role: user
|
| 11 |
-
content: What is your favorite condiment?
|
| 12 |
-
|
| 13 |
-
extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
| 14 |
-
---
|
| 15 |
-
|
| 16 |
-
# Model Card for Mistral-7B-Instruct-v0.1
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
## Encode and Decode with `mistral_common`
|
| 20 |
-
|
| 21 |
-
```py
|
| 22 |
-
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 23 |
-
from mistral_common.protocol.instruct.messages import UserMessage
|
| 24 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 25 |
-
|
| 26 |
-
mistral_models_path = "MISTRAL_MODELS_PATH"
|
| 27 |
-
|
| 28 |
-
tokenizer = MistralTokenizer.v1()
|
| 29 |
-
|
| 30 |
-
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
|
| 31 |
-
|
| 32 |
-
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
| 33 |
-
```
|
| 34 |
-
|
| 35 |
-
## Inference with `mistral_inference`
|
| 36 |
-
|
| 37 |
-
```py
|
| 38 |
-
from mistral_inference.transformer import Transformer
|
| 39 |
-
from mistral_inference.generate import generate
|
| 40 |
-
|
| 41 |
-
model = Transformer.from_folder(mistral_models_path)
|
| 42 |
-
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
| 43 |
-
|
| 44 |
-
result = tokenizer.decode(out_tokens[0])
|
| 45 |
-
|
| 46 |
-
print(result)
|
| 47 |
-
```
|
| 48 |
-
|
| 49 |
-
## Inference with hugging face `transformers`
|
| 50 |
-
|
| 51 |
-
```py
|
| 52 |
-
from transformers import AutoModelForCausalLM
|
| 53 |
-
|
| 54 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
| 55 |
-
model.to("cuda")
|
| 56 |
-
|
| 57 |
-
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
|
| 58 |
-
|
| 59 |
-
# decode with mistral tokenizer
|
| 60 |
-
result = tokenizer.decode(generated_ids[0].tolist())
|
| 61 |
-
print(result)
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
> [!TIP]
|
| 65 |
-
> PRs to correct the `transformers` tokenizer so that it gives 1-to-1 the same results as the `mistral_common` reference implementation are very welcome!
|
| 66 |
-
|
| 67 |
-
---
|
| 68 |
-
|
| 69 |
-
The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
|
| 70 |
-
|
| 71 |
-
For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
|
| 72 |
-
|
| 73 |
-
## Instruction format
|
| 74 |
-
|
| 75 |
-
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
| 76 |
-
|
| 77 |
-
E.g.
|
| 78 |
-
```
|
| 79 |
-
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
| 80 |
-
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
| 81 |
-
"[INST] Do you have mayonnaise recipes? [/INST]"
|
| 82 |
-
```
|
| 83 |
-
|
| 84 |
-
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
|
| 85 |
-
|
| 86 |
-
```python
|
| 87 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 88 |
-
|
| 89 |
-
device = "cuda" # the device to load the model onto
|
| 90 |
-
|
| 91 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
| 92 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
| 93 |
-
|
| 94 |
-
messages = [
|
| 95 |
-
{"role": "user", "content": "What is your favourite condiment?"},
|
| 96 |
-
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 97 |
-
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
| 98 |
-
]
|
| 99 |
-
|
| 100 |
-
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
| 101 |
-
|
| 102 |
-
model_inputs = encodeds.to(device)
|
| 103 |
-
model.to(device)
|
| 104 |
-
|
| 105 |
-
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
| 106 |
-
decoded = tokenizer.batch_decode(generated_ids)
|
| 107 |
-
print(decoded[0])
|
| 108 |
-
```
|
| 109 |
-
|
| 110 |
-
## Model Architecture
|
| 111 |
-
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
| 112 |
-
- Grouped-Query Attention
|
| 113 |
-
- Sliding-Window Attention
|
| 114 |
-
- Byte-fallback BPE tokenizer
|
| 115 |
-
|
| 116 |
-
## Troubleshooting
|
| 117 |
-
- If you see the following error:
|
| 118 |
-
```
|
| 119 |
-
Traceback (most recent call last):
|
| 120 |
-
File "", line 1, in
|
| 121 |
-
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
|
| 122 |
-
config, kwargs = AutoConfig.from_pretrained(
|
| 123 |
-
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
|
| 124 |
-
config_class = CONFIG_MAPPING[config_dict["model_type"]]
|
| 125 |
-
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
|
| 126 |
-
raise KeyError(key)
|
| 127 |
-
KeyError: 'mistral'
|
| 128 |
-
```
|
| 129 |
-
|
| 130 |
-
Installing transformers from source should solve the issue
|
| 131 |
-
pip install git+https://github.com/huggingface/transformers
|
| 132 |
-
|
| 133 |
-
This should not be required after transformers-v4.33.4.
|
| 134 |
-
|
| 135 |
-
## Limitations
|
| 136 |
-
|
| 137 |
-
The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
|
| 138 |
-
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
|
| 139 |
-
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
|
| 140 |
-
|
| 141 |
-
## The Mistral AI Team
|
| 142 |
-
|
| 143 |
-
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
DEFAULT_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 7 |
+
|
| 8 |
+
HF_TOKEN = os.getenv("HF_API_TOKEN") # Loads token if set as a secret
|
| 9 |
+
|
| 10 |
+
# --- Initialize Inference Client ---
|
| 11 |
+
client = None
|
| 12 |
+
|
| 13 |
+
def get_inference_client(model_name):
|
| 14 |
+
global client
|
| 15 |
+
# Initialize client if it hasn't been, or if model name changes
|
| 16 |
+
if client is None or client.model != model_name:
|
| 17 |
+
try:
|
| 18 |
+
# InferenceClient will use HF_TOKEN if it's not None,
|
| 19 |
+
# or try to infer token otherwise (e.g. from CLI login if running locally).
|
| 20 |
+
# If no token is found and the model requires one, the API call will fail.
|
| 21 |
+
client = InferenceClient(model=model_name, token=HF_TOKEN if HF_TOKEN else None)
|
| 22 |
+
print(f"InferenceClient initialized for {model_name}. Token {'provided' if HF_TOKEN else 'not explicitly provided'}.")
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Failed to initialize InferenceClient for {model_name}: {e}")
|
| 25 |
+
return None
|
| 26 |
+
return client
|
| 27 |
+
|
| 28 |
+
# --- Evaluation Logic ---
|
| 29 |
+
def evaluate_understanding(prompt, response):
|
| 30 |
+
"""
|
| 31 |
+
Analyzes the model's response to give a basic evaluation of understanding.
|
| 32 |
+
This is a simple heuristic and not a comprehensive NLU assessment.
|
| 33 |
+
"""
|
| 34 |
+
if not response or response.strip() == "":
|
| 35 |
+
return "❌ Not Understood (Empty or whitespace response)"
|
| 36 |
+
|
| 37 |
+
response_lower = response.lower() # For case-insensitive checks
|
| 38 |
+
|
| 39 |
+
misunderstanding_keywords = [
|
| 40 |
+
"i'm sorry", "i apologize", "i cannot", "i am unable", "unable to",
|
| 41 |
+
"i don't understand", "could you please rephrase", "i'm not sure i follow",
|
| 42 |
+
"that's not clear", "i do not have enough information", "as an ai language model, i don't",
|
| 43 |
+
"i'm not programmed to", "i lack the ability to"
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
for keyword in misunderstanding_keywords:
|
| 47 |
+
if keyword in response_lower:
|
| 48 |
+
return f"⚠️ Potentially Not Understood (Contains: '{keyword}')"
|
| 49 |
+
|
| 50 |
+
if len(prompt.split()) > 7 and len(response.split()) < 10:
|
| 51 |
+
return "⚠️ Potentially Not Understood (Response seems too short for the prompt)"
|
| 52 |
+
|
| 53 |
+
if prompt.lower() in response_lower and len(response_lower) < len(prompt.lower()) * 1.5 :
|
| 54 |
+
if len(prompt.split()) > 5 :
|
| 55 |
+
return "⚠️ Potentially Not Understood (Response might be echoing the prompt)"
|
| 56 |
+
|
| 57 |
+
return "✔️ Likely Understood"
|
| 58 |
+
|
| 59 |
+
# --- Core Logic: Query Model and Evaluate ---
|
| 60 |
+
def query_model_and_evaluate(user_prompt, model_name_to_use):
|
| 61 |
+
"""
|
| 62 |
+
Sends the prompt to the model, gets the response, and evaluates it.
|
| 63 |
+
"""
|
| 64 |
+
if not user_prompt or user_prompt.strip() == "":
|
| 65 |
+
return "Please enter a prompt.", "Evaluation N/A", model_name_to_use
|
| 66 |
+
|
| 67 |
+
# Note: The explicit block for Llama models without HF_TOKEN has been removed.
|
| 68 |
+
# The InferenceClient will attempt the call. If the model is gated and requires
|
| 69 |
+
# a token or terms acceptance, the API call itself will likely fail.
|
| 70 |
+
print(f"Querying model: {model_name_to_use}. HF_TOKEN {'is set' if HF_TOKEN else 'is NOT set/empty'}.")
|
| 71 |
+
|
| 72 |
+
current_client = get_inference_client(model_name_to_use)
|
| 73 |
+
if current_client is None:
|
| 74 |
+
error_msg = f"Error: Could not initialize the model API client for {model_name_to_use}. Check logs. This might be due to the model requiring authentication (like a token or accepting terms on Hugging Face) which was not available or successful."
|
| 75 |
+
return error_msg, "Evaluation N/A", model_name_to_use
|
| 76 |
+
|
| 77 |
+
try:
|
| 78 |
+
if "mistral" in model_name_to_use.lower() and "instruct" in model_name_to_use.lower():
|
| 79 |
+
formatted_prompt = f"<s>[INST] {user_prompt.strip()} [/INST]"
|
| 80 |
+
elif "llama-2" in model_name_to_use.lower() and "chat" in model_name_to_use.lower():
|
| 81 |
+
formatted_prompt = (
|
| 82 |
+
f"[INST] <<SYS>>\nYou are a helpful assistant. Your goal is to understand the user's prompt and respond accurately and relevantly.\n"
|
| 83 |
+
f"<</SYS>>\n\n{user_prompt.strip()} [/INST]"
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
formatted_prompt = user_prompt.strip()
|
| 87 |
+
|
| 88 |
+
params = {
|
| 89 |
+
"max_new_tokens": 300,
|
| 90 |
+
"temperature": 0.6,
|
| 91 |
+
"top_p": 0.9,
|
| 92 |
+
"repetition_penalty": 1.1,
|
| 93 |
+
"do_sample": True,
|
| 94 |
+
"return_full_text": False
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
model_response_text = current_client.text_generation(formatted_prompt, **params)
|
| 98 |
+
|
| 99 |
+
if not model_response_text:
|
| 100 |
+
model_response_text = ""
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
error_message = f"Error calling model API for {model_name_to_use}: {str(e)}. This can happen if the model is gated, requires a Hugging Face token, or if you need to accept its terms of use on the Hugging Face website."
|
| 104 |
+
print(error_message)
|
| 105 |
+
return error_message, "Evaluation N/A", model_name_to_use
|
| 106 |
+
|
| 107 |
+
understanding_evaluation = evaluate_understanding(user_prompt, model_response_text)
|
| 108 |
+
|
| 109 |
+
return model_response_text, understanding_evaluation, model_name_to_use
|
| 110 |
+
|
| 111 |
+
# --- Gradio Interface Definition ---
|
| 112 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="orange")) as demo:
|
| 113 |
+
gr.Markdown(
|
| 114 |
+
f"""
|
| 115 |
+
# 🎯 Model Prompt Understanding Test
|
| 116 |
+
Enter a prompt for the selected language model. The application will send this to the model via Hugging Face's Inference API.
|
| 117 |
+
The model's response will be analyzed to provide a **basic heuristic assessment** of its understanding.
|
| 118 |
+
|
| 119 |
+
**Selected Model:** <span id='current-model-display'>{DEFAULT_MODEL_NAME}</span>
|
| 120 |
+
"""
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
current_model_name_state = gr.State(DEFAULT_MODEL_NAME)
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
user_input_prompt = gr.Textbox(
|
| 127 |
+
label="✏️ Enter your Prompt:",
|
| 128 |
+
placeholder="e.g., Explain the concept of zero-shot learning in 3 sentences.",
|
| 129 |
+
lines=4,
|
| 130 |
+
scale=3
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
submit_button = gr.Button("🚀 Submit Prompt and Evaluate", variant="primary")
|
| 134 |
+
|
| 135 |
+
gr.Markdown("---")
|
| 136 |
+
gr.Markdown("### 🤖 Model Response & Evaluation")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Column(scale=2):
|
| 140 |
+
model_output_response = gr.Textbox(
|
| 141 |
+
label="📝 Model's Response:",
|
| 142 |
+
lines=10,
|
| 143 |
+
interactive=False,
|
| 144 |
+
show_copy_button=True
|
| 145 |
+
)
|
| 146 |
+
with gr.Column(scale=1):
|
| 147 |
+
evaluation_output = gr.Textbox(
|
| 148 |
+
label="🧐 Understanding Evaluation:",
|
| 149 |
+
lines=2,
|
| 150 |
+
interactive=False,
|
| 151 |
+
show_copy_button=True
|
| 152 |
+
)
|
| 153 |
+
displayed_model = gr.Textbox(
|
| 154 |
+
label="⚙️ Model Used for this Response:",
|
| 155 |
+
interactive=False,
|
| 156 |
+
lines=1
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
submit_button.click(
|
| 160 |
+
fn=query_model_and_evaluate,
|
| 161 |
+
inputs=[user_input_prompt, current_model_name_state],
|
| 162 |
+
outputs=[model_output_response, evaluation_output, displayed_model]
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
gr.Markdown(
|
| 166 |
+
"""
|
| 167 |
+
---
|
| 168 |
+
**Disclaimer:**
|
| 169 |
+
* The 'Understanding Evaluation' is a very basic automated heuristic.
|
| 170 |
+
* **Using Models:** This app will attempt to connect to the selected model. Some models (especially gated ones like Llama-2) may require you to have a Hugging Face account, accept their terms of use on the Hugging Face website, and might implicitly require a valid `HF_TOKEN` associated with your account (even if not explicitly set as a secret in this Space). If a model call fails, it could be due to these reasons.
|
| 171 |
+
* Response quality depends heavily on the chosen model and the clarity of your prompt.
|
| 172 |
+
"""
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
gr.Examples(
|
| 176 |
+
examples=[
|
| 177 |
+
["Explain the difference between supervised and unsupervised machine learning.", DEFAULT_MODEL_NAME],
|
| 178 |
+
["Write a short poem about a curious robot.", DEFAULT_MODEL_NAME],
|
| 179 |
+
["What are the main challenges in developing AGI?", DEFAULT_MODEL_NAME],
|
| 180 |
+
["Summarize the plot of 'War and Peace' in one paragraph.", DEFAULT_MODEL_NAME],
|
| 181 |
+
["asdfjkl; qwerpoiu", DEFAULT_MODEL_NAME]
|
| 182 |
+
],
|
| 183 |
+
inputs=[user_input_prompt, current_model_name_state],
|
| 184 |
+
outputs=[model_output_response, evaluation_output, displayed_model],
|
| 185 |
+
fn=query_model_and_evaluate,
|
| 186 |
+
cache_examples=False,
|
| 187 |
+
label="💡 Example Prompts (click to try)"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
print("Attempting to launch Gradio demo...")
|
| 192 |
+
print(f"Default model: {DEFAULT_MODEL_NAME}")
|
| 193 |
+
if HF_TOKEN:
|
| 194 |
+
print("HF_TOKEN is set.")
|
| 195 |
+
else:
|
| 196 |
+
print("HF_TOKEN is NOT set. Some models (especially gated ones like Llama) might require a token or prior agreement to terms on the Hugging Face website to function correctly. The app will attempt to run, but API calls may fail.")
|
| 197 |
+
demo.launch()
|