End of training
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: MCG-NJU/videomae-base-finetuned-ssv2
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: videomae-base-finetuned-ssv2-finetuned-sports-videos-in-the-wild
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# videomae-base-finetuned-ssv2-finetuned-sports-videos-in-the-wild
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-finetuned-ssv2) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.1496
|
22 |
+
- Accuracy: 0.7594
|
23 |
+
- Macro Precision: 0.6910
|
24 |
+
- Macro Recall: 0.7199
|
25 |
+
- Macro F1: 0.6905
|
26 |
+
- Weighted Precision: 0.7833
|
27 |
+
- Weighted Recall: 0.7594
|
28 |
+
- Weighted F1: 0.7598
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0005
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- training_steps: 8400
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 |
|
59 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
60 |
+
| 1.6313 | 0.0501 | 421 | 1.6631 | 0.5297 | 0.5192 | 0.4451 | 0.4010 | 0.6102 | 0.5297 | 0.4954 |
|
61 |
+
| 1.8344 | 1.0501 | 842 | 2.3963 | 0.3274 | 0.4950 | 0.3302 | 0.2925 | 0.6196 | 0.3274 | 0.3216 |
|
62 |
+
| 1.9713 | 2.0501 | 1263 | 1.6678 | 0.5111 | 0.5007 | 0.4767 | 0.4215 | 0.6097 | 0.5111 | 0.5061 |
|
63 |
+
| 1.7598 | 3.0501 | 1684 | 1.5902 | 0.5275 | 0.5426 | 0.4819 | 0.4417 | 0.6160 | 0.5275 | 0.5152 |
|
64 |
+
| 1.5432 | 4.0501 | 2105 | 1.4812 | 0.5603 | 0.5400 | 0.4867 | 0.4513 | 0.6482 | 0.5603 | 0.5514 |
|
65 |
+
| 1.3945 | 5.0501 | 2526 | 1.5876 | 0.5286 | 0.5659 | 0.5077 | 0.4697 | 0.6529 | 0.5286 | 0.5421 |
|
66 |
+
| 1.2047 | 6.0501 | 2947 | 1.2964 | 0.6376 | 0.5846 | 0.5892 | 0.5527 | 0.6834 | 0.6376 | 0.6361 |
|
67 |
+
| 1.2434 | 7.0501 | 3368 | 1.4268 | 0.5793 | 0.5920 | 0.5630 | 0.5116 | 0.6897 | 0.5793 | 0.5842 |
|
68 |
+
| 1.1157 | 8.0501 | 3789 | 1.1934 | 0.6533 | 0.6153 | 0.6177 | 0.5837 | 0.7081 | 0.6533 | 0.6504 |
|
69 |
+
| 0.9056 | 9.0501 | 4210 | 1.1501 | 0.6551 | 0.6268 | 0.6337 | 0.5984 | 0.7202 | 0.6551 | 0.6658 |
|
70 |
+
| 0.7085 | 10.0501 | 4631 | 1.1881 | 0.6810 | 0.6295 | 0.6458 | 0.6101 | 0.7221 | 0.6810 | 0.6826 |
|
71 |
+
| 0.6789 | 11.0501 | 5052 | 1.1540 | 0.7043 | 0.6744 | 0.6577 | 0.6396 | 0.7304 | 0.7043 | 0.6959 |
|
72 |
+
| 0.5957 | 12.0501 | 5473 | 1.2473 | 0.6832 | 0.6210 | 0.6377 | 0.6077 | 0.7028 | 0.6832 | 0.6759 |
|
73 |
+
| 0.4533 | 13.0501 | 5894 | 1.1441 | 0.6927 | 0.6495 | 0.6450 | 0.6278 | 0.7211 | 0.6927 | 0.6924 |
|
74 |
+
| 0.4165 | 14.0501 | 6315 | 1.2567 | 0.7116 | 0.6708 | 0.6839 | 0.6468 | 0.7622 | 0.7116 | 0.7094 |
|
75 |
+
| 0.2661 | 15.0501 | 6736 | 1.1229 | 0.7204 | 0.6526 | 0.6809 | 0.6417 | 0.7598 | 0.7204 | 0.7226 |
|
76 |
+
| 0.2679 | 16.0501 | 7157 | 1.1790 | 0.7382 | 0.6838 | 0.7055 | 0.6717 | 0.7792 | 0.7382 | 0.7397 |
|
77 |
+
| 0.1875 | 17.0501 | 7578 | 1.1689 | 0.7506 | 0.6983 | 0.7060 | 0.6894 | 0.7746 | 0.7506 | 0.7529 |
|
78 |
+
| 0.2501 | 18.0501 | 7999 | 1.1802 | 0.7557 | 0.6911 | 0.7190 | 0.6883 | 0.7802 | 0.7557 | 0.7537 |
|
79 |
+
| 0.1072 | 19.0477 | 8400 | 1.1496 | 0.7594 | 0.6910 | 0.7199 | 0.6905 | 0.7833 | 0.7594 | 0.7598 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.51.3
|
85 |
+
- Pytorch 2.1.0+cu118
|
86 |
+
- Datasets 3.6.0
|
87 |
+
- Tokenizers 0.21.1
|