mitegvg commited on
Commit
8cff250
·
verified ·
1 Parent(s): 6b1f7b2

End of training

Browse files
Files changed (2) hide show
  1. README.md +87 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: nateraw/videomae-base-finetuned-ucf101
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: videomae-base-finetuned-ucf101-finetuned-sports-videos-in-the-wild
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # videomae-base-finetuned-ucf101-finetuned-sports-videos-in-the-wild
18
+
19
+ This model is a fine-tuned version of [nateraw/videomae-base-finetuned-ucf101](https://huggingface.co/nateraw/videomae-base-finetuned-ucf101) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1854
22
+ - Accuracy: 0.7156
23
+ - Macro Precision: 0.6435
24
+ - Macro Recall: 0.6832
25
+ - Macro F1: 0.6496
26
+ - Weighted Precision: 0.7291
27
+ - Weighted Recall: 0.7156
28
+ - Weighted F1: 0.7123
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0005
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - training_steps: 8400
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 |
59
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
60
+ | 1.3138 | 0.0501 | 421 | 1.4612 | 0.5567 | 0.5803 | 0.4927 | 0.4443 | 0.6651 | 0.5567 | 0.5304 |
61
+ | 1.6466 | 1.0501 | 842 | 2.0129 | 0.4149 | 0.5145 | 0.4334 | 0.3690 | 0.6366 | 0.4149 | 0.4187 |
62
+ | 2.011 | 2.0501 | 1263 | 1.7381 | 0.5133 | 0.4672 | 0.4727 | 0.4241 | 0.5597 | 0.5133 | 0.4856 |
63
+ | 1.7608 | 3.0501 | 1684 | 1.5144 | 0.5578 | 0.5472 | 0.4672 | 0.4537 | 0.6215 | 0.5578 | 0.5480 |
64
+ | 1.7314 | 4.0501 | 2105 | 1.6549 | 0.4816 | 0.4753 | 0.4554 | 0.4187 | 0.5675 | 0.4816 | 0.4706 |
65
+ | 1.4126 | 5.0501 | 2526 | 1.6839 | 0.5126 | 0.4827 | 0.4714 | 0.4237 | 0.5870 | 0.5126 | 0.5113 |
66
+ | 1.3559 | 6.0501 | 2947 | 1.4764 | 0.5742 | 0.5511 | 0.5145 | 0.4814 | 0.6425 | 0.5742 | 0.5695 |
67
+ | 1.3796 | 7.0501 | 3368 | 1.6817 | 0.5064 | 0.5133 | 0.4921 | 0.4536 | 0.6268 | 0.5064 | 0.5253 |
68
+ | 1.4973 | 8.0501 | 3789 | 1.4903 | 0.5520 | 0.5365 | 0.5120 | 0.4793 | 0.6410 | 0.5520 | 0.5587 |
69
+ | 1.4502 | 9.0501 | 4210 | 1.3603 | 0.5921 | 0.5603 | 0.5687 | 0.5291 | 0.6589 | 0.5921 | 0.5989 |
70
+ | 1.056 | 10.0501 | 4631 | 1.4150 | 0.5811 | 0.5584 | 0.5756 | 0.5269 | 0.6636 | 0.5811 | 0.5917 |
71
+ | 0.8247 | 11.0501 | 5052 | 1.2276 | 0.6686 | 0.5981 | 0.6132 | 0.5821 | 0.6775 | 0.6686 | 0.6595 |
72
+ | 0.8066 | 12.0501 | 5473 | 1.3814 | 0.6289 | 0.5689 | 0.5820 | 0.5502 | 0.6628 | 0.6289 | 0.6215 |
73
+ | 0.735 | 13.0501 | 5894 | 1.3259 | 0.6424 | 0.5940 | 0.5780 | 0.5585 | 0.6813 | 0.6424 | 0.6373 |
74
+ | 0.9272 | 14.0501 | 6315 | 1.2747 | 0.6664 | 0.6161 | 0.6330 | 0.5966 | 0.7183 | 0.6664 | 0.6715 |
75
+ | 0.5165 | 15.0501 | 6736 | 1.2230 | 0.6923 | 0.6323 | 0.6416 | 0.6151 | 0.7109 | 0.6923 | 0.6867 |
76
+ | 0.5818 | 16.0501 | 7157 | 1.3102 | 0.6642 | 0.6001 | 0.6261 | 0.5883 | 0.6979 | 0.6642 | 0.6652 |
77
+ | 0.5303 | 17.0501 | 7578 | 1.1552 | 0.7178 | 0.6570 | 0.6744 | 0.6504 | 0.7264 | 0.7178 | 0.7124 |
78
+ | 0.5301 | 18.0501 | 7999 | 1.2448 | 0.7014 | 0.6288 | 0.6740 | 0.6366 | 0.7171 | 0.7014 | 0.6987 |
79
+ | 0.352 | 19.0477 | 8400 | 1.1854 | 0.7156 | 0.6435 | 0.6832 | 0.6496 | 0.7291 | 0.7156 | 0.7123 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.51.3
85
+ - Pytorch 2.1.0+cu118
86
+ - Datasets 3.6.0
87
+ - Tokenizers 0.21.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:38f18a94a800b6a48026c8f1d75b490fa469860be5d5a417aa0df10317868d51
3
  size 345023504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2faba834d0df2b16acf3978bbd57ad7cb9509d5185fcaace35d1d40b47e6d08b
3
  size 345023504