File size: 2,813 Bytes
6027ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80391ea
 
 
 
 
 
6027ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80391ea
 
 
 
 
 
 
 
6027ca6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: videomae-diving48-multilabel-finetuned
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-diving48-multilabel-finetuned

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3969
- F1 Macro: 0.2636
- Precision Macro: 0.2180
- Recall Macro: 0.4145
- Exact Match Ratio: 0.0003
- Hamming Accuracy: 0.7557

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002

- train_batch_size: 4

- eval_batch_size: 4

- seed: 42

- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 25544

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step  | Validation Loss | F1 Macro | Precision Macro | Recall Macro | Exact Match Ratio | Hamming Accuracy |

|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:-----------------:|:----------------:|

| 1.3045        | 0.1250 | 3194  | 1.4774          | 0.1609   | 0.1518          | 0.2915       | 0.0               | 0.7280           |

| 0.8881        | 1.1250 | 6388  | 1.4002          | 0.2035   | 0.1952          | 0.3239       | 0.0               | 0.7537           |

| 1.0683        | 2.1250 | 9582  | 1.4017          | 0.2014   | 0.1999          | 0.3470       | 0.0               | 0.7403           |

| 0.7672        | 3.1250 | 12776 | 1.4316          | 0.2280   | 0.1893          | 0.3459       | 0.0022            | 0.7566           |

| 0.8529        | 4.1250 | 15970 | 1.4307          | 0.2333   | 0.2011          | 0.3484       | 0.0003            | 0.7650           |

| 1.0022        | 5.1250 | 19164 | 1.4566          | 0.2367   | 0.2095          | 0.3404       | 0.0005            | 0.7734           |

| 1.3422        | 6.1250 | 22358 | 1.4297          | 0.2602   | 0.2127          | 0.3922       | 0.0005            | 0.7634           |

| 1.0641        | 7.1247 | 25544 | 1.3969          | 0.2636   | 0.2180          | 0.4145       | 0.0003            | 0.7557           |





### Framework versions



- Transformers 4.51.3

- Pytorch 2.1.0+cu118

- Datasets 3.6.0

- Tokenizers 0.21.1