Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1739293094.ffa6c6e41717 +3 -0
- README.md +56 -3
- checkpoint_p0/best_000000827_3387392_reward_27.708.pth +3 -0
- checkpoint_p0/checkpoint_000000505_2068480.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +782 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1739293094.ffa6c6e41717
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:897194d33f3bad38420a9952f23bb6422e6acdad4fd792f365712079dc6dfa49
|
3 |
+
size 198253
|
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 13.89 +/- 4.35
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r mjm54/doom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000827_3387392_reward_27.708.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afed8cdd503fd7059f94471d3621d07e613df6976731b701db832384cd065e4b
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000505_2068480.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:428047e09195c5740626f4d4d15de184d42003aea50fc2f3f9e755cc1dcd431e
|
3 |
+
size 34929541
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7827e5bb1c1e6f89e3cb9d64613ee737d4b6c834e99e2192abce710250ce279
|
3 |
+
size 34929477
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/content/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ddd575d0becac4187539ff60d80ffdd87c2bfcc4448bb138279dff0a413054
|
3 |
+
size 27331329
|
sf_log.txt
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-02-11 16:58:19,123][02117] Saving configuration to /content/train_dir/default_experiment/config.json...
|
2 |
+
[2025-02-11 16:58:19,125][02117] Rollout worker 0 uses device cpu
|
3 |
+
[2025-02-11 16:58:19,126][02117] Rollout worker 1 uses device cpu
|
4 |
+
[2025-02-11 16:58:19,128][02117] Rollout worker 2 uses device cpu
|
5 |
+
[2025-02-11 16:58:19,129][02117] Rollout worker 3 uses device cpu
|
6 |
+
[2025-02-11 16:58:19,130][02117] Rollout worker 4 uses device cpu
|
7 |
+
[2025-02-11 16:58:19,131][02117] Rollout worker 5 uses device cpu
|
8 |
+
[2025-02-11 16:58:19,133][02117] Rollout worker 6 uses device cpu
|
9 |
+
[2025-02-11 16:58:19,135][02117] Rollout worker 7 uses device cpu
|
10 |
+
[2025-02-11 16:58:19,247][02117] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-02-11 16:58:19,248][02117] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-02-11 16:58:19,281][02117] Starting all processes...
|
13 |
+
[2025-02-11 16:58:19,282][02117] Starting process learner_proc0
|
14 |
+
[2025-02-11 16:58:19,341][02117] Starting all processes...
|
15 |
+
[2025-02-11 16:58:19,346][02117] Starting process inference_proc0-0
|
16 |
+
[2025-02-11 16:58:19,347][02117] Starting process rollout_proc0
|
17 |
+
[2025-02-11 16:58:19,348][02117] Starting process rollout_proc1
|
18 |
+
[2025-02-11 16:58:19,349][02117] Starting process rollout_proc2
|
19 |
+
[2025-02-11 16:58:19,349][02117] Starting process rollout_proc3
|
20 |
+
[2025-02-11 16:58:19,349][02117] Starting process rollout_proc4
|
21 |
+
[2025-02-11 16:58:19,351][02117] Starting process rollout_proc5
|
22 |
+
[2025-02-11 16:58:19,352][02117] Starting process rollout_proc6
|
23 |
+
[2025-02-11 16:58:19,356][02117] Starting process rollout_proc7
|
24 |
+
[2025-02-11 16:58:22,077][04730] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2025-02-11 16:58:22,077][04730] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
26 |
+
[2025-02-11 16:58:22,099][04730] Num visible devices: 1
|
27 |
+
[2025-02-11 16:58:22,187][04733] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
28 |
+
[2025-02-11 16:58:22,239][04734] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
29 |
+
[2025-02-11 16:58:22,253][04731] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
30 |
+
[2025-02-11 16:58:22,418][04717] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
31 |
+
[2025-02-11 16:58:22,418][04717] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
32 |
+
[2025-02-11 16:58:22,438][04717] Num visible devices: 1
|
33 |
+
[2025-02-11 16:58:22,439][04737] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
34 |
+
[2025-02-11 16:58:22,450][04732] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
35 |
+
[2025-02-11 16:58:22,473][04717] Starting seed is not provided
|
36 |
+
[2025-02-11 16:58:22,474][04717] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
37 |
+
[2025-02-11 16:58:22,474][04717] Initializing actor-critic model on device cuda:0
|
38 |
+
[2025-02-11 16:58:22,474][04717] RunningMeanStd input shape: (3, 72, 128)
|
39 |
+
[2025-02-11 16:58:22,478][04717] RunningMeanStd input shape: (1,)
|
40 |
+
[2025-02-11 16:58:22,488][04736] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
41 |
+
[2025-02-11 16:58:22,492][04717] ConvEncoder: input_channels=3
|
42 |
+
[2025-02-11 16:58:22,532][04735] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
43 |
+
[2025-02-11 16:58:22,538][04738] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
44 |
+
[2025-02-11 16:58:22,783][04717] Conv encoder output size: 512
|
45 |
+
[2025-02-11 16:58:22,783][04717] Policy head output size: 512
|
46 |
+
[2025-02-11 16:58:22,843][04717] Created Actor Critic model with architecture:
|
47 |
+
[2025-02-11 16:58:22,843][04717] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2025-02-11 16:58:23,065][04717] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-02-11 16:58:27,331][04717] No checkpoints found
|
90 |
+
[2025-02-11 16:58:27,331][04717] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-02-11 16:58:27,331][04717] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-02-11 16:58:27,333][04717] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-02-11 16:58:27,333][04717] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-02-11 16:58:27,415][04730] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-02-11 16:58:27,416][04730] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-02-11 16:58:27,427][04730] ConvEncoder: input_channels=3
|
97 |
+
[2025-02-11 16:58:27,530][04730] Conv encoder output size: 512
|
98 |
+
[2025-02-11 16:58:27,531][04730] Policy head output size: 512
|
99 |
+
[2025-02-11 16:58:27,566][02117] Inference worker 0-0 is ready!
|
100 |
+
[2025-02-11 16:58:27,567][02117] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-02-11 16:58:27,609][04734] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-02-11 16:58:27,610][04733] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-02-11 16:58:27,620][04736] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-02-11 16:58:27,620][04737] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-02-11 16:58:27,620][04731] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-02-11 16:58:27,621][04735] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-02-11 16:58:27,622][04738] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-02-11 16:58:27,622][04732] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-02-11 16:58:27,943][04733] Decorrelating experience for 0 frames...
|
110 |
+
[2025-02-11 16:58:27,943][04731] Decorrelating experience for 0 frames...
|
111 |
+
[2025-02-11 16:58:27,943][04736] Decorrelating experience for 0 frames...
|
112 |
+
[2025-02-11 16:58:27,943][04737] Decorrelating experience for 0 frames...
|
113 |
+
[2025-02-11 16:58:27,943][04735] Decorrelating experience for 0 frames...
|
114 |
+
[2025-02-11 16:58:27,943][04734] Decorrelating experience for 0 frames...
|
115 |
+
[2025-02-11 16:58:28,176][04732] Decorrelating experience for 0 frames...
|
116 |
+
[2025-02-11 16:58:28,204][04735] Decorrelating experience for 32 frames...
|
117 |
+
[2025-02-11 16:58:28,211][04736] Decorrelating experience for 32 frames...
|
118 |
+
[2025-02-11 16:58:28,211][04733] Decorrelating experience for 32 frames...
|
119 |
+
[2025-02-11 16:58:28,218][04737] Decorrelating experience for 32 frames...
|
120 |
+
[2025-02-11 16:58:28,219][04734] Decorrelating experience for 32 frames...
|
121 |
+
[2025-02-11 16:58:28,440][04732] Decorrelating experience for 32 frames...
|
122 |
+
[2025-02-11 16:58:28,506][04738] Decorrelating experience for 0 frames...
|
123 |
+
[2025-02-11 16:58:28,560][04733] Decorrelating experience for 64 frames...
|
124 |
+
[2025-02-11 16:58:28,561][04734] Decorrelating experience for 64 frames...
|
125 |
+
[2025-02-11 16:58:28,685][04737] Decorrelating experience for 64 frames...
|
126 |
+
[2025-02-11 16:58:28,756][04738] Decorrelating experience for 32 frames...
|
127 |
+
[2025-02-11 16:58:28,766][04732] Decorrelating experience for 64 frames...
|
128 |
+
[2025-02-11 16:58:28,772][04736] Decorrelating experience for 64 frames...
|
129 |
+
[2025-02-11 16:58:28,889][04733] Decorrelating experience for 96 frames...
|
130 |
+
[2025-02-11 16:58:28,999][04737] Decorrelating experience for 96 frames...
|
131 |
+
[2025-02-11 16:58:29,008][04734] Decorrelating experience for 96 frames...
|
132 |
+
[2025-02-11 16:58:29,047][04735] Decorrelating experience for 64 frames...
|
133 |
+
[2025-02-11 16:58:29,165][04738] Decorrelating experience for 64 frames...
|
134 |
+
[2025-02-11 16:58:29,281][04732] Decorrelating experience for 96 frames...
|
135 |
+
[2025-02-11 16:58:29,294][04731] Decorrelating experience for 32 frames...
|
136 |
+
[2025-02-11 16:58:29,329][04735] Decorrelating experience for 96 frames...
|
137 |
+
[2025-02-11 16:58:29,477][04738] Decorrelating experience for 96 frames...
|
138 |
+
[2025-02-11 16:58:29,570][04736] Decorrelating experience for 96 frames...
|
139 |
+
[2025-02-11 16:58:29,591][02117] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
140 |
+
[2025-02-11 16:58:29,637][04731] Decorrelating experience for 64 frames...
|
141 |
+
[2025-02-11 16:58:29,914][04731] Decorrelating experience for 96 frames...
|
142 |
+
[2025-02-11 16:58:30,515][04717] Signal inference workers to stop experience collection...
|
143 |
+
[2025-02-11 16:58:30,521][04730] InferenceWorker_p0-w0: stopping experience collection
|
144 |
+
[2025-02-11 16:58:31,874][04717] Signal inference workers to resume experience collection...
|
145 |
+
[2025-02-11 16:58:31,874][04730] InferenceWorker_p0-w0: resuming experience collection
|
146 |
+
[2025-02-11 16:58:33,649][04730] Updated weights for policy 0, policy_version 10 (0.0091)
|
147 |
+
[2025-02-11 16:58:34,591][02117] Fps is (10 sec: 11468.5, 60 sec: 11468.5, 300 sec: 11468.5). Total num frames: 57344. Throughput: 0: 2059.2. Samples: 10296. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
148 |
+
[2025-02-11 16:58:34,594][02117] Avg episode reward: [(0, '4.406')]
|
149 |
+
[2025-02-11 16:58:35,801][04730] Updated weights for policy 0, policy_version 20 (0.0011)
|
150 |
+
[2025-02-11 16:58:37,831][04730] Updated weights for policy 0, policy_version 30 (0.0012)
|
151 |
+
[2025-02-11 16:58:39,239][02117] Heartbeat connected on Batcher_0
|
152 |
+
[2025-02-11 16:58:39,253][02117] Heartbeat connected on InferenceWorker_p0-w0
|
153 |
+
[2025-02-11 16:58:39,255][02117] Heartbeat connected on RolloutWorker_w0
|
154 |
+
[2025-02-11 16:58:39,258][02117] Heartbeat connected on RolloutWorker_w1
|
155 |
+
[2025-02-11 16:58:39,265][02117] Heartbeat connected on RolloutWorker_w3
|
156 |
+
[2025-02-11 16:58:39,267][02117] Heartbeat connected on RolloutWorker_w2
|
157 |
+
[2025-02-11 16:58:39,270][02117] Heartbeat connected on LearnerWorker_p0
|
158 |
+
[2025-02-11 16:58:39,272][02117] Heartbeat connected on RolloutWorker_w4
|
159 |
+
[2025-02-11 16:58:39,274][02117] Heartbeat connected on RolloutWorker_w5
|
160 |
+
[2025-02-11 16:58:39,277][02117] Heartbeat connected on RolloutWorker_w6
|
161 |
+
[2025-02-11 16:58:39,281][02117] Heartbeat connected on RolloutWorker_w7
|
162 |
+
[2025-02-11 16:58:39,591][02117] Fps is (10 sec: 15564.6, 60 sec: 15564.6, 300 sec: 15564.6). Total num frames: 155648. Throughput: 0: 3989.2. Samples: 39892. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
163 |
+
[2025-02-11 16:58:39,593][02117] Avg episode reward: [(0, '4.354')]
|
164 |
+
[2025-02-11 16:58:39,595][04717] Saving new best policy, reward=4.354!
|
165 |
+
[2025-02-11 16:58:39,882][04730] Updated weights for policy 0, policy_version 40 (0.0011)
|
166 |
+
[2025-02-11 16:58:41,914][04730] Updated weights for policy 0, policy_version 50 (0.0012)
|
167 |
+
[2025-02-11 16:58:44,017][04730] Updated weights for policy 0, policy_version 60 (0.0012)
|
168 |
+
[2025-02-11 16:58:44,591][02117] Fps is (10 sec: 19660.8, 60 sec: 16930.0, 300 sec: 16930.0). Total num frames: 253952. Throughput: 0: 3656.8. Samples: 54852. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
169 |
+
[2025-02-11 16:58:44,594][02117] Avg episode reward: [(0, '4.916')]
|
170 |
+
[2025-02-11 16:58:44,632][04717] Saving new best policy, reward=4.916!
|
171 |
+
[2025-02-11 16:58:46,073][04730] Updated weights for policy 0, policy_version 70 (0.0012)
|
172 |
+
[2025-02-11 16:58:48,187][04730] Updated weights for policy 0, policy_version 80 (0.0012)
|
173 |
+
[2025-02-11 16:58:49,591][02117] Fps is (10 sec: 19661.0, 60 sec: 17612.8, 300 sec: 17612.8). Total num frames: 352256. Throughput: 0: 4224.2. Samples: 84484. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
174 |
+
[2025-02-11 16:58:49,593][02117] Avg episode reward: [(0, '4.411')]
|
175 |
+
[2025-02-11 16:58:50,261][04730] Updated weights for policy 0, policy_version 90 (0.0011)
|
176 |
+
[2025-02-11 16:58:52,302][04730] Updated weights for policy 0, policy_version 100 (0.0012)
|
177 |
+
[2025-02-11 16:58:54,339][04730] Updated weights for policy 0, policy_version 110 (0.0012)
|
178 |
+
[2025-02-11 16:58:54,591][02117] Fps is (10 sec: 20070.4, 60 sec: 18186.2, 300 sec: 18186.2). Total num frames: 454656. Throughput: 0: 4584.7. Samples: 114618. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
179 |
+
[2025-02-11 16:58:54,593][02117] Avg episode reward: [(0, '5.041')]
|
180 |
+
[2025-02-11 16:58:54,600][04717] Saving new best policy, reward=5.041!
|
181 |
+
[2025-02-11 16:58:56,397][04730] Updated weights for policy 0, policy_version 120 (0.0012)
|
182 |
+
[2025-02-11 16:58:58,458][04730] Updated weights for policy 0, policy_version 130 (0.0012)
|
183 |
+
[2025-02-11 16:58:59,591][02117] Fps is (10 sec: 20070.4, 60 sec: 18432.0, 300 sec: 18432.0). Total num frames: 552960. Throughput: 0: 4319.6. Samples: 129588. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
184 |
+
[2025-02-11 16:58:59,592][02117] Avg episode reward: [(0, '5.187')]
|
185 |
+
[2025-02-11 16:58:59,596][04717] Saving new best policy, reward=5.187!
|
186 |
+
[2025-02-11 16:59:00,573][04730] Updated weights for policy 0, policy_version 140 (0.0012)
|
187 |
+
[2025-02-11 16:59:02,651][04730] Updated weights for policy 0, policy_version 150 (0.0011)
|
188 |
+
[2025-02-11 16:59:04,591][02117] Fps is (10 sec: 19660.8, 60 sec: 18607.5, 300 sec: 18607.5). Total num frames: 651264. Throughput: 0: 4546.2. Samples: 159118. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
189 |
+
[2025-02-11 16:59:04,593][02117] Avg episode reward: [(0, '5.322')]
|
190 |
+
[2025-02-11 16:59:04,599][04717] Saving new best policy, reward=5.322!
|
191 |
+
[2025-02-11 16:59:04,725][04730] Updated weights for policy 0, policy_version 160 (0.0012)
|
192 |
+
[2025-02-11 16:59:06,685][04730] Updated weights for policy 0, policy_version 170 (0.0011)
|
193 |
+
[2025-02-11 16:59:08,703][04730] Updated weights for policy 0, policy_version 180 (0.0012)
|
194 |
+
[2025-02-11 16:59:09,591][02117] Fps is (10 sec: 20070.4, 60 sec: 18841.6, 300 sec: 18841.6). Total num frames: 753664. Throughput: 0: 4740.0. Samples: 189600. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
195 |
+
[2025-02-11 16:59:09,594][02117] Avg episode reward: [(0, '5.649')]
|
196 |
+
[2025-02-11 16:59:09,596][04717] Saving new best policy, reward=5.649!
|
197 |
+
[2025-02-11 16:59:10,701][04730] Updated weights for policy 0, policy_version 190 (0.0011)
|
198 |
+
[2025-02-11 16:59:12,765][04730] Updated weights for policy 0, policy_version 200 (0.0012)
|
199 |
+
[2025-02-11 16:59:14,591][02117] Fps is (10 sec: 20070.3, 60 sec: 18932.6, 300 sec: 18932.6). Total num frames: 851968. Throughput: 0: 4547.4. Samples: 204632. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
200 |
+
[2025-02-11 16:59:14,594][02117] Avg episode reward: [(0, '7.183')]
|
201 |
+
[2025-02-11 16:59:14,601][04717] Saving new best policy, reward=7.183!
|
202 |
+
[2025-02-11 16:59:14,895][04730] Updated weights for policy 0, policy_version 210 (0.0011)
|
203 |
+
[2025-02-11 16:59:16,906][04730] Updated weights for policy 0, policy_version 220 (0.0011)
|
204 |
+
[2025-02-11 16:59:18,910][04730] Updated weights for policy 0, policy_version 230 (0.0011)
|
205 |
+
[2025-02-11 16:59:19,591][02117] Fps is (10 sec: 20070.4, 60 sec: 19087.3, 300 sec: 19087.3). Total num frames: 954368. Throughput: 0: 4981.7. Samples: 234470. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
206 |
+
[2025-02-11 16:59:19,593][02117] Avg episode reward: [(0, '7.850')]
|
207 |
+
[2025-02-11 16:59:19,595][04717] Saving new best policy, reward=7.850!
|
208 |
+
[2025-02-11 16:59:20,937][04730] Updated weights for policy 0, policy_version 240 (0.0012)
|
209 |
+
[2025-02-11 16:59:22,946][04730] Updated weights for policy 0, policy_version 250 (0.0012)
|
210 |
+
[2025-02-11 16:59:24,591][02117] Fps is (10 sec: 20480.1, 60 sec: 19213.9, 300 sec: 19213.9). Total num frames: 1056768. Throughput: 0: 4998.8. Samples: 264838. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
211 |
+
[2025-02-11 16:59:24,593][02117] Avg episode reward: [(0, '8.006')]
|
212 |
+
[2025-02-11 16:59:24,600][04717] Saving new best policy, reward=8.006!
|
213 |
+
[2025-02-11 16:59:25,009][04730] Updated weights for policy 0, policy_version 260 (0.0012)
|
214 |
+
[2025-02-11 16:59:27,111][04730] Updated weights for policy 0, policy_version 270 (0.0012)
|
215 |
+
[2025-02-11 16:59:29,119][04730] Updated weights for policy 0, policy_version 280 (0.0011)
|
216 |
+
[2025-02-11 16:59:29,591][02117] Fps is (10 sec: 20070.4, 60 sec: 19251.2, 300 sec: 19251.2). Total num frames: 1155072. Throughput: 0: 4994.5. Samples: 279602. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
|
217 |
+
[2025-02-11 16:59:29,593][02117] Avg episode reward: [(0, '9.474')]
|
218 |
+
[2025-02-11 16:59:29,596][04717] Saving new best policy, reward=9.474!
|
219 |
+
[2025-02-11 16:59:31,146][04730] Updated weights for policy 0, policy_version 290 (0.0012)
|
220 |
+
[2025-02-11 16:59:33,153][04730] Updated weights for policy 0, policy_version 300 (0.0011)
|
221 |
+
[2025-02-11 16:59:34,591][02117] Fps is (10 sec: 20070.3, 60 sec: 20002.1, 300 sec: 19345.7). Total num frames: 1257472. Throughput: 0: 5012.0. Samples: 310026. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
222 |
+
[2025-02-11 16:59:34,593][02117] Avg episode reward: [(0, '10.984')]
|
223 |
+
[2025-02-11 16:59:34,601][04717] Saving new best policy, reward=10.984!
|
224 |
+
[2025-02-11 16:59:35,151][04730] Updated weights for policy 0, policy_version 310 (0.0012)
|
225 |
+
[2025-02-11 16:59:37,170][04730] Updated weights for policy 0, policy_version 320 (0.0012)
|
226 |
+
[2025-02-11 16:59:39,312][04730] Updated weights for policy 0, policy_version 330 (0.0011)
|
227 |
+
[2025-02-11 16:59:39,591][02117] Fps is (10 sec: 20070.2, 60 sec: 20002.1, 300 sec: 19368.2). Total num frames: 1355776. Throughput: 0: 5008.7. Samples: 340008. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
228 |
+
[2025-02-11 16:59:39,593][02117] Avg episode reward: [(0, '12.348')]
|
229 |
+
[2025-02-11 16:59:39,595][04717] Saving new best policy, reward=12.348!
|
230 |
+
[2025-02-11 16:59:41,328][04730] Updated weights for policy 0, policy_version 340 (0.0011)
|
231 |
+
[2025-02-11 16:59:43,318][04730] Updated weights for policy 0, policy_version 350 (0.0012)
|
232 |
+
[2025-02-11 16:59:44,591][02117] Fps is (10 sec: 20070.4, 60 sec: 20070.4, 300 sec: 19442.3). Total num frames: 1458176. Throughput: 0: 5017.1. Samples: 355360. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
233 |
+
[2025-02-11 16:59:44,593][02117] Avg episode reward: [(0, '16.962')]
|
234 |
+
[2025-02-11 16:59:44,599][04717] Saving new best policy, reward=16.962!
|
235 |
+
[2025-02-11 16:59:45,359][04730] Updated weights for policy 0, policy_version 360 (0.0011)
|
236 |
+
[2025-02-11 16:59:47,346][04730] Updated weights for policy 0, policy_version 370 (0.0011)
|
237 |
+
[2025-02-11 16:59:49,324][04730] Updated weights for policy 0, policy_version 380 (0.0011)
|
238 |
+
[2025-02-11 16:59:49,591][02117] Fps is (10 sec: 20479.9, 60 sec: 20138.6, 300 sec: 19507.2). Total num frames: 1560576. Throughput: 0: 5041.5. Samples: 385986. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
239 |
+
[2025-02-11 16:59:49,593][02117] Avg episode reward: [(0, '17.832')]
|
240 |
+
[2025-02-11 16:59:49,596][04717] Saving new best policy, reward=17.832!
|
241 |
+
[2025-02-11 16:59:51,439][04730] Updated weights for policy 0, policy_version 390 (0.0012)
|
242 |
+
[2025-02-11 16:59:53,484][04730] Updated weights for policy 0, policy_version 400 (0.0012)
|
243 |
+
[2025-02-11 16:59:54,591][02117] Fps is (10 sec: 20070.4, 60 sec: 20070.4, 300 sec: 19516.2). Total num frames: 1658880. Throughput: 0: 5029.1. Samples: 415908. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
244 |
+
[2025-02-11 16:59:54,593][02117] Avg episode reward: [(0, '16.814')]
|
245 |
+
[2025-02-11 16:59:55,508][04730] Updated weights for policy 0, policy_version 410 (0.0012)
|
246 |
+
[2025-02-11 16:59:57,516][04730] Updated weights for policy 0, policy_version 420 (0.0012)
|
247 |
+
[2025-02-11 16:59:59,493][04730] Updated weights for policy 0, policy_version 430 (0.0011)
|
248 |
+
[2025-02-11 16:59:59,591][02117] Fps is (10 sec: 20070.5, 60 sec: 20138.6, 300 sec: 19569.8). Total num frames: 1761280. Throughput: 0: 5034.8. Samples: 431198. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
249 |
+
[2025-02-11 16:59:59,592][02117] Avg episode reward: [(0, '20.721')]
|
250 |
+
[2025-02-11 16:59:59,596][04717] Saving new best policy, reward=20.721!
|
251 |
+
[2025-02-11 17:00:01,494][04730] Updated weights for policy 0, policy_version 440 (0.0011)
|
252 |
+
[2025-02-11 17:00:03,555][04730] Updated weights for policy 0, policy_version 450 (0.0012)
|
253 |
+
[2025-02-11 17:00:04,591][02117] Fps is (10 sec: 20070.3, 60 sec: 20138.7, 300 sec: 19574.5). Total num frames: 1859584. Throughput: 0: 5051.1. Samples: 461768. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
254 |
+
[2025-02-11 17:00:04,593][02117] Avg episode reward: [(0, '19.242')]
|
255 |
+
[2025-02-11 17:00:05,622][04730] Updated weights for policy 0, policy_version 460 (0.0011)
|
256 |
+
[2025-02-11 17:00:07,592][04730] Updated weights for policy 0, policy_version 470 (0.0012)
|
257 |
+
[2025-02-11 17:00:09,582][04730] Updated weights for policy 0, policy_version 480 (0.0012)
|
258 |
+
[2025-02-11 17:00:09,591][02117] Fps is (10 sec: 20480.2, 60 sec: 20206.9, 300 sec: 19660.8). Total num frames: 1966080. Throughput: 0: 5057.7. Samples: 492434. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
259 |
+
[2025-02-11 17:00:09,592][02117] Avg episode reward: [(0, '19.533')]
|
260 |
+
[2025-02-11 17:00:11,583][04730] Updated weights for policy 0, policy_version 490 (0.0011)
|
261 |
+
[2025-02-11 17:00:13,593][04730] Updated weights for policy 0, policy_version 500 (0.0012)
|
262 |
+
[2025-02-11 17:00:14,591][02117] Fps is (10 sec: 20889.9, 60 sec: 20275.3, 300 sec: 19699.8). Total num frames: 2068480. Throughput: 0: 5071.8. Samples: 507832. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
263 |
+
[2025-02-11 17:00:14,592][02117] Avg episode reward: [(0, '17.718')]
|
264 |
+
[2025-02-11 17:00:14,599][04717] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000505_2068480.pth...
|
265 |
+
[2025-02-11 17:00:15,631][04730] Updated weights for policy 0, policy_version 510 (0.0011)
|
266 |
+
[2025-02-11 17:00:17,716][04730] Updated weights for policy 0, policy_version 520 (0.0011)
|
267 |
+
[2025-02-11 17:00:19,591][02117] Fps is (10 sec: 20070.2, 60 sec: 20206.9, 300 sec: 19698.0). Total num frames: 2166784. Throughput: 0: 5063.2. Samples: 537868. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
268 |
+
[2025-02-11 17:00:19,593][02117] Avg episode reward: [(0, '19.044')]
|
269 |
+
[2025-02-11 17:00:19,699][04730] Updated weights for policy 0, policy_version 530 (0.0011)
|
270 |
+
[2025-02-11 17:00:21,691][04730] Updated weights for policy 0, policy_version 540 (0.0012)
|
271 |
+
[2025-02-11 17:00:23,667][04730] Updated weights for policy 0, policy_version 550 (0.0012)
|
272 |
+
[2025-02-11 17:00:24,591][02117] Fps is (10 sec: 20070.1, 60 sec: 20206.9, 300 sec: 19732.0). Total num frames: 2269184. Throughput: 0: 5083.7. Samples: 568776. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
273 |
+
[2025-02-11 17:00:24,593][02117] Avg episode reward: [(0, '22.192')]
|
274 |
+
[2025-02-11 17:00:24,600][04717] Saving new best policy, reward=22.192!
|
275 |
+
[2025-02-11 17:00:25,657][04730] Updated weights for policy 0, policy_version 560 (0.0012)
|
276 |
+
[2025-02-11 17:00:27,633][04730] Updated weights for policy 0, policy_version 570 (0.0011)
|
277 |
+
[2025-02-11 17:00:29,591][02117] Fps is (10 sec: 20480.2, 60 sec: 20275.2, 300 sec: 19763.2). Total num frames: 2371584. Throughput: 0: 5085.0. Samples: 584186. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
278 |
+
[2025-02-11 17:00:29,593][02117] Avg episode reward: [(0, '20.078')]
|
279 |
+
[2025-02-11 17:00:29,675][04730] Updated weights for policy 0, policy_version 580 (0.0011)
|
280 |
+
[2025-02-11 17:00:31,723][04730] Updated weights for policy 0, policy_version 590 (0.0011)
|
281 |
+
[2025-02-11 17:00:33,742][04730] Updated weights for policy 0, policy_version 600 (0.0011)
|
282 |
+
[2025-02-11 17:00:34,591][02117] Fps is (10 sec: 20480.3, 60 sec: 20275.2, 300 sec: 19791.9). Total num frames: 2473984. Throughput: 0: 5075.5. Samples: 614384. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
283 |
+
[2025-02-11 17:00:34,592][02117] Avg episode reward: [(0, '22.330')]
|
284 |
+
[2025-02-11 17:00:34,601][04717] Saving new best policy, reward=22.208!
|
285 |
+
[2025-02-11 17:00:35,756][04730] Updated weights for policy 0, policy_version 610 (0.0011)
|
286 |
+
[2025-02-11 17:00:37,760][04730] Updated weights for policy 0, policy_version 620 (0.0011)
|
287 |
+
[2025-02-11 17:00:39,591][02117] Fps is (10 sec: 20480.1, 60 sec: 20343.5, 300 sec: 19818.3). Total num frames: 2576384. Throughput: 0: 5092.9. Samples: 645086. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
288 |
+
[2025-02-11 17:00:39,593][02117] Avg episode reward: [(0, '23.133')]
|
289 |
+
[2025-02-11 17:00:39,595][04717] Saving new best policy, reward=23.133!
|
290 |
+
[2025-02-11 17:00:39,740][04730] Updated weights for policy 0, policy_version 630 (0.0012)
|
291 |
+
[2025-02-11 17:00:41,780][04730] Updated weights for policy 0, policy_version 640 (0.0012)
|
292 |
+
[2025-02-11 17:00:43,832][04730] Updated weights for policy 0, policy_version 650 (0.0012)
|
293 |
+
[2025-02-11 17:00:44,591][02117] Fps is (10 sec: 20070.0, 60 sec: 20275.2, 300 sec: 19812.5). Total num frames: 2674688. Throughput: 0: 5084.3. Samples: 659990. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
294 |
+
[2025-02-11 17:00:44,594][02117] Avg episode reward: [(0, '24.806')]
|
295 |
+
[2025-02-11 17:00:44,600][04717] Saving new best policy, reward=24.806!
|
296 |
+
[2025-02-11 17:00:45,849][04730] Updated weights for policy 0, policy_version 660 (0.0012)
|
297 |
+
[2025-02-11 17:00:47,837][04730] Updated weights for policy 0, policy_version 670 (0.0012)
|
298 |
+
[2025-02-11 17:00:49,591][02117] Fps is (10 sec: 20070.3, 60 sec: 20275.2, 300 sec: 19836.3). Total num frames: 2777088. Throughput: 0: 5086.9. Samples: 690680. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
299 |
+
[2025-02-11 17:00:49,592][02117] Avg episode reward: [(0, '22.971')]
|
300 |
+
[2025-02-11 17:00:49,820][04730] Updated weights for policy 0, policy_version 680 (0.0011)
|
301 |
+
[2025-02-11 17:00:51,818][04730] Updated weights for policy 0, policy_version 690 (0.0011)
|
302 |
+
[2025-02-11 17:00:53,843][04730] Updated weights for policy 0, policy_version 700 (0.0011)
|
303 |
+
[2025-02-11 17:00:54,591][02117] Fps is (10 sec: 20480.2, 60 sec: 20343.5, 300 sec: 19858.5). Total num frames: 2879488. Throughput: 0: 5083.0. Samples: 721168. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
304 |
+
[2025-02-11 17:00:54,593][02117] Avg episode reward: [(0, '22.836')]
|
305 |
+
[2025-02-11 17:00:55,903][04730] Updated weights for policy 0, policy_version 710 (0.0011)
|
306 |
+
[2025-02-11 17:00:57,926][04730] Updated weights for policy 0, policy_version 720 (0.0011)
|
307 |
+
[2025-02-11 17:00:59,591][02117] Fps is (10 sec: 20479.8, 60 sec: 20343.5, 300 sec: 19879.2). Total num frames: 2981888. Throughput: 0: 5076.0. Samples: 736252. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
308 |
+
[2025-02-11 17:00:59,593][02117] Avg episode reward: [(0, '25.789')]
|
309 |
+
[2025-02-11 17:00:59,596][04717] Saving new best policy, reward=25.789!
|
310 |
+
[2025-02-11 17:00:59,915][04730] Updated weights for policy 0, policy_version 730 (0.0011)
|
311 |
+
[2025-02-11 17:01:01,897][04730] Updated weights for policy 0, policy_version 740 (0.0012)
|
312 |
+
[2025-02-11 17:01:03,868][04730] Updated weights for policy 0, policy_version 750 (0.0011)
|
313 |
+
[2025-02-11 17:01:04,591][02117] Fps is (10 sec: 20479.9, 60 sec: 20411.7, 300 sec: 19898.6). Total num frames: 3084288. Throughput: 0: 5095.6. Samples: 767168. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
314 |
+
[2025-02-11 17:01:04,593][02117] Avg episode reward: [(0, '24.300')]
|
315 |
+
[2025-02-11 17:01:05,874][04730] Updated weights for policy 0, policy_version 760 (0.0011)
|
316 |
+
[2025-02-11 17:01:08,006][04730] Updated weights for policy 0, policy_version 770 (0.0012)
|
317 |
+
[2025-02-11 17:01:09,591][02117] Fps is (10 sec: 20070.4, 60 sec: 20275.2, 300 sec: 19891.2). Total num frames: 3182592. Throughput: 0: 5073.1. Samples: 797064. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
318 |
+
[2025-02-11 17:01:09,594][02117] Avg episode reward: [(0, '26.269')]
|
319 |
+
[2025-02-11 17:01:09,596][04717] Saving new best policy, reward=26.269!
|
320 |
+
[2025-02-11 17:01:10,073][04730] Updated weights for policy 0, policy_version 780 (0.0012)
|
321 |
+
[2025-02-11 17:01:12,071][04730] Updated weights for policy 0, policy_version 790 (0.0012)
|
322 |
+
[2025-02-11 17:01:14,072][04730] Updated weights for policy 0, policy_version 800 (0.0011)
|
323 |
+
[2025-02-11 17:01:14,591][02117] Fps is (10 sec: 20070.5, 60 sec: 20275.2, 300 sec: 19909.0). Total num frames: 3284992. Throughput: 0: 5068.6. Samples: 812272. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
324 |
+
[2025-02-11 17:01:14,593][02117] Avg episode reward: [(0, '26.525')]
|
325 |
+
[2025-02-11 17:01:14,600][04717] Saving new best policy, reward=26.525!
|
326 |
+
[2025-02-11 17:01:16,076][04730] Updated weights for policy 0, policy_version 810 (0.0011)
|
327 |
+
[2025-02-11 17:01:18,085][04730] Updated weights for policy 0, policy_version 820 (0.0011)
|
328 |
+
[2025-02-11 17:01:19,591][02117] Fps is (10 sec: 20480.0, 60 sec: 20343.5, 300 sec: 19925.8). Total num frames: 3387392. Throughput: 0: 5076.7. Samples: 842836. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
329 |
+
[2025-02-11 17:01:19,593][02117] Avg episode reward: [(0, '27.708')]
|
330 |
+
[2025-02-11 17:01:19,595][04717] Saving new best policy, reward=27.708!
|
331 |
+
[2025-02-11 17:01:20,180][04730] Updated weights for policy 0, policy_version 830 (0.0012)
|
332 |
+
[2025-02-11 17:01:22,264][04730] Updated weights for policy 0, policy_version 840 (0.0011)
|
333 |
+
[2025-02-11 17:01:24,266][04730] Updated weights for policy 0, policy_version 850 (0.0012)
|
334 |
+
[2025-02-11 17:01:24,591][02117] Fps is (10 sec: 20070.0, 60 sec: 20275.1, 300 sec: 19918.2). Total num frames: 3485696. Throughput: 0: 5059.7. Samples: 872776. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
335 |
+
[2025-02-11 17:01:24,593][02117] Avg episode reward: [(0, '25.521')]
|
336 |
+
[2025-02-11 17:01:26,427][04730] Updated weights for policy 0, policy_version 860 (0.0012)
|
337 |
+
[2025-02-11 17:01:28,447][04730] Updated weights for policy 0, policy_version 870 (0.0011)
|
338 |
+
[2025-02-11 17:01:29,591][02117] Fps is (10 sec: 19661.0, 60 sec: 20206.9, 300 sec: 19911.1). Total num frames: 3584000. Throughput: 0: 5047.8. Samples: 887138. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
339 |
+
[2025-02-11 17:01:29,593][02117] Avg episode reward: [(0, '25.614')]
|
340 |
+
[2025-02-11 17:01:30,456][04730] Updated weights for policy 0, policy_version 880 (0.0012)
|
341 |
+
[2025-02-11 17:01:32,555][04730] Updated weights for policy 0, policy_version 890 (0.0012)
|
342 |
+
[2025-02-11 17:01:34,591][02117] Fps is (10 sec: 19661.1, 60 sec: 20138.6, 300 sec: 19904.3). Total num frames: 3682304. Throughput: 0: 5029.0. Samples: 916984. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
343 |
+
[2025-02-11 17:01:34,593][02117] Avg episode reward: [(0, '23.923')]
|
344 |
+
[2025-02-11 17:01:34,633][04730] Updated weights for policy 0, policy_version 900 (0.0012)
|
345 |
+
[2025-02-11 17:01:36,609][04730] Updated weights for policy 0, policy_version 910 (0.0011)
|
346 |
+
[2025-02-11 17:01:38,610][04730] Updated weights for policy 0, policy_version 920 (0.0011)
|
347 |
+
[2025-02-11 17:01:39,591][02117] Fps is (10 sec: 20070.4, 60 sec: 20138.7, 300 sec: 19919.5). Total num frames: 3784704. Throughput: 0: 5037.4. Samples: 947850. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
348 |
+
[2025-02-11 17:01:39,593][02117] Avg episode reward: [(0, '26.635')]
|
349 |
+
[2025-02-11 17:01:40,626][04730] Updated weights for policy 0, policy_version 930 (0.0011)
|
350 |
+
[2025-02-11 17:01:42,596][04730] Updated weights for policy 0, policy_version 940 (0.0011)
|
351 |
+
[2025-02-11 17:01:44,591][02117] Fps is (10 sec: 20480.0, 60 sec: 20207.0, 300 sec: 19933.9). Total num frames: 3887104. Throughput: 0: 5045.2. Samples: 963288. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
352 |
+
[2025-02-11 17:01:44,593][02117] Avg episode reward: [(0, '27.553')]
|
353 |
+
[2025-02-11 17:01:44,633][04730] Updated weights for policy 0, policy_version 950 (0.0011)
|
354 |
+
[2025-02-11 17:01:46,770][04730] Updated weights for policy 0, policy_version 960 (0.0012)
|
355 |
+
[2025-02-11 17:01:48,767][04730] Updated weights for policy 0, policy_version 970 (0.0011)
|
356 |
+
[2025-02-11 17:01:49,591][02117] Fps is (10 sec: 20479.8, 60 sec: 20206.9, 300 sec: 19947.5). Total num frames: 3989504. Throughput: 0: 5022.9. Samples: 993200. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
|
357 |
+
[2025-02-11 17:01:49,593][02117] Avg episode reward: [(0, '22.304')]
|
358 |
+
[2025-02-11 17:01:50,333][04717] Stopping Batcher_0...
|
359 |
+
[2025-02-11 17:01:50,333][04717] Loop batcher_evt_loop terminating...
|
360 |
+
[2025-02-11 17:01:50,333][04717] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
361 |
+
[2025-02-11 17:01:50,334][02117] Component Batcher_0 stopped!
|
362 |
+
[2025-02-11 17:01:50,353][04730] Weights refcount: 2 0
|
363 |
+
[2025-02-11 17:01:50,355][04730] Stopping InferenceWorker_p0-w0...
|
364 |
+
[2025-02-11 17:01:50,356][04730] Loop inference_proc0-0_evt_loop terminating...
|
365 |
+
[2025-02-11 17:01:50,355][02117] Component InferenceWorker_p0-w0 stopped!
|
366 |
+
[2025-02-11 17:01:50,377][04738] Stopping RolloutWorker_w7...
|
367 |
+
[2025-02-11 17:01:50,378][04738] Loop rollout_proc7_evt_loop terminating...
|
368 |
+
[2025-02-11 17:01:50,379][04735] Stopping RolloutWorker_w4...
|
369 |
+
[2025-02-11 17:01:50,377][02117] Component RolloutWorker_w7 stopped!
|
370 |
+
[2025-02-11 17:01:50,380][04735] Loop rollout_proc4_evt_loop terminating...
|
371 |
+
[2025-02-11 17:01:50,381][04733] Stopping RolloutWorker_w2...
|
372 |
+
[2025-02-11 17:01:50,382][04733] Loop rollout_proc2_evt_loop terminating...
|
373 |
+
[2025-02-11 17:01:50,382][04736] Stopping RolloutWorker_w5...
|
374 |
+
[2025-02-11 17:01:50,382][04736] Loop rollout_proc5_evt_loop terminating...
|
375 |
+
[2025-02-11 17:01:50,380][02117] Component RolloutWorker_w4 stopped!
|
376 |
+
[2025-02-11 17:01:50,384][04731] Stopping RolloutWorker_w1...
|
377 |
+
[2025-02-11 17:01:50,385][04734] Stopping RolloutWorker_w3...
|
378 |
+
[2025-02-11 17:01:50,385][04731] Loop rollout_proc1_evt_loop terminating...
|
379 |
+
[2025-02-11 17:01:50,385][04737] Stopping RolloutWorker_w6...
|
380 |
+
[2025-02-11 17:01:50,385][04732] Stopping RolloutWorker_w0...
|
381 |
+
[2025-02-11 17:01:50,385][04737] Loop rollout_proc6_evt_loop terminating...
|
382 |
+
[2025-02-11 17:01:50,384][02117] Component RolloutWorker_w2 stopped!
|
383 |
+
[2025-02-11 17:01:50,385][04732] Loop rollout_proc0_evt_loop terminating...
|
384 |
+
[2025-02-11 17:01:50,385][04734] Loop rollout_proc3_evt_loop terminating...
|
385 |
+
[2025-02-11 17:01:50,386][02117] Component RolloutWorker_w5 stopped!
|
386 |
+
[2025-02-11 17:01:50,388][02117] Component RolloutWorker_w1 stopped!
|
387 |
+
[2025-02-11 17:01:50,390][02117] Component RolloutWorker_w3 stopped!
|
388 |
+
[2025-02-11 17:01:50,391][02117] Component RolloutWorker_w6 stopped!
|
389 |
+
[2025-02-11 17:01:50,392][02117] Component RolloutWorker_w0 stopped!
|
390 |
+
[2025-02-11 17:01:50,408][04717] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
391 |
+
[2025-02-11 17:01:50,508][04717] Stopping LearnerWorker_p0...
|
392 |
+
[2025-02-11 17:01:50,509][04717] Loop learner_proc0_evt_loop terminating...
|
393 |
+
[2025-02-11 17:01:50,510][02117] Component LearnerWorker_p0 stopped!
|
394 |
+
[2025-02-11 17:01:50,513][02117] Waiting for process learner_proc0 to stop...
|
395 |
+
[2025-02-11 17:01:51,471][02117] Waiting for process inference_proc0-0 to join...
|
396 |
+
[2025-02-11 17:01:51,473][02117] Waiting for process rollout_proc0 to join...
|
397 |
+
[2025-02-11 17:01:51,475][02117] Waiting for process rollout_proc1 to join...
|
398 |
+
[2025-02-11 17:01:51,476][02117] Waiting for process rollout_proc2 to join...
|
399 |
+
[2025-02-11 17:01:51,478][02117] Waiting for process rollout_proc3 to join...
|
400 |
+
[2025-02-11 17:01:51,479][02117] Waiting for process rollout_proc4 to join...
|
401 |
+
[2025-02-11 17:01:51,480][02117] Waiting for process rollout_proc5 to join...
|
402 |
+
[2025-02-11 17:01:51,482][02117] Waiting for process rollout_proc6 to join...
|
403 |
+
[2025-02-11 17:01:51,484][02117] Waiting for process rollout_proc7 to join...
|
404 |
+
[2025-02-11 17:01:51,485][02117] Batcher 0 profile tree view:
|
405 |
+
batching: 11.8391, releasing_batches: 0.0239
|
406 |
+
[2025-02-11 17:01:51,487][02117] InferenceWorker_p0-w0 profile tree view:
|
407 |
+
wait_policy: 0.0001
|
408 |
+
wait_policy_total: 3.8509
|
409 |
+
update_model: 3.2577
|
410 |
+
weight_update: 0.0012
|
411 |
+
one_step: 0.0028
|
412 |
+
handle_policy_step: 186.2668
|
413 |
+
deserialize: 7.5123, stack: 1.2923, obs_to_device_normalize: 46.5476, forward: 87.7695, send_messages: 12.9137
|
414 |
+
prepare_outputs: 23.0564
|
415 |
+
to_cpu: 14.8538
|
416 |
+
[2025-02-11 17:01:51,488][02117] Learner 0 profile tree view:
|
417 |
+
misc: 0.0037, prepare_batch: 9.7542
|
418 |
+
train: 23.1544
|
419 |
+
epoch_init: 0.0043, minibatch_init: 0.0055, losses_postprocess: 0.2719, kl_divergence: 0.3588, after_optimizer: 5.1615
|
420 |
+
calculate_losses: 9.5406
|
421 |
+
losses_init: 0.0032, forward_head: 0.6877, bptt_initial: 5.7729, tail: 0.5934, advantages_returns: 0.1634, losses: 1.1112
|
422 |
+
bptt: 1.0598
|
423 |
+
bptt_forward_core: 1.0099
|
424 |
+
update: 7.4917
|
425 |
+
clip: 0.7795
|
426 |
+
[2025-02-11 17:01:51,489][02117] RolloutWorker_w0 profile tree view:
|
427 |
+
wait_for_trajectories: 0.1244, enqueue_policy_requests: 8.8805, env_step: 128.7927, overhead: 5.5858, complete_rollouts: 0.2136
|
428 |
+
save_policy_outputs: 7.9403
|
429 |
+
split_output_tensors: 3.0252
|
430 |
+
[2025-02-11 17:01:51,490][02117] RolloutWorker_w7 profile tree view:
|
431 |
+
wait_for_trajectories: 0.1250, enqueue_policy_requests: 8.8758, env_step: 128.8295, overhead: 5.5466, complete_rollouts: 0.2104
|
432 |
+
save_policy_outputs: 7.9921
|
433 |
+
split_output_tensors: 3.0659
|
434 |
+
[2025-02-11 17:01:51,493][02117] Loop Runner_EvtLoop terminating...
|
435 |
+
[2025-02-11 17:01:51,494][02117] Runner profile tree view:
|
436 |
+
main_loop: 212.2128
|
437 |
+
[2025-02-11 17:01:51,495][02117] Collected {0: 4005888}, FPS: 18876.7
|
438 |
+
[2025-02-11 17:02:12,715][02117] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
439 |
+
[2025-02-11 17:02:12,717][02117] Overriding arg 'num_workers' with value 1 passed from command line
|
440 |
+
[2025-02-11 17:02:12,718][02117] Adding new argument 'no_render'=True that is not in the saved config file!
|
441 |
+
[2025-02-11 17:02:12,720][02117] Adding new argument 'save_video'=True that is not in the saved config file!
|
442 |
+
[2025-02-11 17:02:12,721][02117] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
443 |
+
[2025-02-11 17:02:12,722][02117] Adding new argument 'video_name'=None that is not in the saved config file!
|
444 |
+
[2025-02-11 17:02:12,723][02117] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
445 |
+
[2025-02-11 17:02:12,725][02117] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
446 |
+
[2025-02-11 17:02:12,726][02117] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
447 |
+
[2025-02-11 17:02:12,727][02117] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
448 |
+
[2025-02-11 17:02:12,728][02117] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
449 |
+
[2025-02-11 17:02:12,730][02117] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
450 |
+
[2025-02-11 17:02:12,731][02117] Adding new argument 'train_script'=None that is not in the saved config file!
|
451 |
+
[2025-02-11 17:02:12,732][02117] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
452 |
+
[2025-02-11 17:02:12,733][02117] Using frameskip 1 and render_action_repeat=4 for evaluation
|
453 |
+
[2025-02-11 17:02:12,762][02117] Doom resolution: 160x120, resize resolution: (128, 72)
|
454 |
+
[2025-02-11 17:02:12,765][02117] RunningMeanStd input shape: (3, 72, 128)
|
455 |
+
[2025-02-11 17:02:12,767][02117] RunningMeanStd input shape: (1,)
|
456 |
+
[2025-02-11 17:02:12,781][02117] ConvEncoder: input_channels=3
|
457 |
+
[2025-02-11 17:02:12,886][02117] Conv encoder output size: 512
|
458 |
+
[2025-02-11 17:02:12,888][02117] Policy head output size: 512
|
459 |
+
[2025-02-11 17:02:13,041][02117] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
460 |
+
[2025-02-11 17:02:13,854][02117] Num frames 100...
|
461 |
+
[2025-02-11 17:02:13,981][02117] Num frames 200...
|
462 |
+
[2025-02-11 17:02:14,110][02117] Num frames 300...
|
463 |
+
[2025-02-11 17:02:14,237][02117] Num frames 400...
|
464 |
+
[2025-02-11 17:02:14,363][02117] Num frames 500...
|
465 |
+
[2025-02-11 17:02:14,487][02117] Num frames 600...
|
466 |
+
[2025-02-11 17:02:14,617][02117] Num frames 700...
|
467 |
+
[2025-02-11 17:02:14,745][02117] Num frames 800...
|
468 |
+
[2025-02-11 17:02:14,878][02117] Num frames 900...
|
469 |
+
[2025-02-11 17:02:15,015][02117] Num frames 1000...
|
470 |
+
[2025-02-11 17:02:15,149][02117] Num frames 1100...
|
471 |
+
[2025-02-11 17:02:15,275][02117] Num frames 1200...
|
472 |
+
[2025-02-11 17:02:15,402][02117] Num frames 1300...
|
473 |
+
[2025-02-11 17:02:15,530][02117] Num frames 1400...
|
474 |
+
[2025-02-11 17:02:15,657][02117] Num frames 1500...
|
475 |
+
[2025-02-11 17:02:15,784][02117] Num frames 1600...
|
476 |
+
[2025-02-11 17:02:15,913][02117] Num frames 1700...
|
477 |
+
[2025-02-11 17:02:16,043][02117] Num frames 1800...
|
478 |
+
[2025-02-11 17:02:16,208][02117] Avg episode rewards: #0: 47.859, true rewards: #0: 18.860
|
479 |
+
[2025-02-11 17:02:16,209][02117] Avg episode reward: 47.859, avg true_objective: 18.860
|
480 |
+
[2025-02-11 17:02:16,229][02117] Num frames 1900...
|
481 |
+
[2025-02-11 17:02:16,353][02117] Num frames 2000...
|
482 |
+
[2025-02-11 17:02:16,479][02117] Num frames 2100...
|
483 |
+
[2025-02-11 17:02:16,604][02117] Num frames 2200...
|
484 |
+
[2025-02-11 17:02:16,730][02117] Num frames 2300...
|
485 |
+
[2025-02-11 17:02:16,855][02117] Num frames 2400...
|
486 |
+
[2025-02-11 17:02:16,982][02117] Num frames 2500...
|
487 |
+
[2025-02-11 17:02:17,109][02117] Num frames 2600...
|
488 |
+
[2025-02-11 17:02:17,236][02117] Num frames 2700...
|
489 |
+
[2025-02-11 17:02:17,314][02117] Avg episode rewards: #0: 31.590, true rewards: #0: 13.590
|
490 |
+
[2025-02-11 17:02:17,315][02117] Avg episode reward: 31.590, avg true_objective: 13.590
|
491 |
+
[2025-02-11 17:02:17,420][02117] Num frames 2800...
|
492 |
+
[2025-02-11 17:02:17,547][02117] Num frames 2900...
|
493 |
+
[2025-02-11 17:02:17,674][02117] Num frames 3000...
|
494 |
+
[2025-02-11 17:02:17,800][02117] Num frames 3100...
|
495 |
+
[2025-02-11 17:02:17,928][02117] Num frames 3200...
|
496 |
+
[2025-02-11 17:02:18,058][02117] Num frames 3300...
|
497 |
+
[2025-02-11 17:02:18,185][02117] Num frames 3400...
|
498 |
+
[2025-02-11 17:02:18,311][02117] Num frames 3500...
|
499 |
+
[2025-02-11 17:02:18,440][02117] Num frames 3600...
|
500 |
+
[2025-02-11 17:02:18,567][02117] Num frames 3700...
|
501 |
+
[2025-02-11 17:02:18,697][02117] Num frames 3800...
|
502 |
+
[2025-02-11 17:02:18,827][02117] Num frames 3900...
|
503 |
+
[2025-02-11 17:02:18,955][02117] Num frames 4000...
|
504 |
+
[2025-02-11 17:02:19,090][02117] Num frames 4100...
|
505 |
+
[2025-02-11 17:02:19,224][02117] Num frames 4200...
|
506 |
+
[2025-02-11 17:02:19,353][02117] Num frames 4300...
|
507 |
+
[2025-02-11 17:02:19,479][02117] Num frames 4400...
|
508 |
+
[2025-02-11 17:02:19,611][02117] Num frames 4500...
|
509 |
+
[2025-02-11 17:02:19,741][02117] Num frames 4600...
|
510 |
+
[2025-02-11 17:02:19,872][02117] Num frames 4700...
|
511 |
+
[2025-02-11 17:02:20,012][02117] Num frames 4800...
|
512 |
+
[2025-02-11 17:02:20,093][02117] Avg episode rewards: #0: 41.059, true rewards: #0: 16.060
|
513 |
+
[2025-02-11 17:02:20,094][02117] Avg episode reward: 41.059, avg true_objective: 16.060
|
514 |
+
[2025-02-11 17:02:20,205][02117] Num frames 4900...
|
515 |
+
[2025-02-11 17:02:20,338][02117] Num frames 5000...
|
516 |
+
[2025-02-11 17:02:20,467][02117] Num frames 5100...
|
517 |
+
[2025-02-11 17:02:20,594][02117] Num frames 5200...
|
518 |
+
[2025-02-11 17:02:20,719][02117] Num frames 5300...
|
519 |
+
[2025-02-11 17:02:20,847][02117] Num frames 5400...
|
520 |
+
[2025-02-11 17:02:20,936][02117] Avg episode rewards: #0: 34.065, true rewards: #0: 13.565
|
521 |
+
[2025-02-11 17:02:20,937][02117] Avg episode reward: 34.065, avg true_objective: 13.565
|
522 |
+
[2025-02-11 17:02:21,032][02117] Num frames 5500...
|
523 |
+
[2025-02-11 17:02:21,160][02117] Num frames 5600...
|
524 |
+
[2025-02-11 17:02:21,288][02117] Num frames 5700...
|
525 |
+
[2025-02-11 17:02:21,413][02117] Num frames 5800...
|
526 |
+
[2025-02-11 17:02:21,539][02117] Num frames 5900...
|
527 |
+
[2025-02-11 17:02:21,707][02117] Avg episode rewards: #0: 29.584, true rewards: #0: 11.984
|
528 |
+
[2025-02-11 17:02:21,709][02117] Avg episode reward: 29.584, avg true_objective: 11.984
|
529 |
+
[2025-02-11 17:02:21,721][02117] Num frames 6000...
|
530 |
+
[2025-02-11 17:02:21,849][02117] Num frames 6100...
|
531 |
+
[2025-02-11 17:02:21,983][02117] Num frames 6200...
|
532 |
+
[2025-02-11 17:02:22,115][02117] Num frames 6300...
|
533 |
+
[2025-02-11 17:02:22,245][02117] Num frames 6400...
|
534 |
+
[2025-02-11 17:02:22,373][02117] Num frames 6500...
|
535 |
+
[2025-02-11 17:02:22,500][02117] Num frames 6600...
|
536 |
+
[2025-02-11 17:02:22,629][02117] Num frames 6700...
|
537 |
+
[2025-02-11 17:02:22,756][02117] Num frames 6800...
|
538 |
+
[2025-02-11 17:02:22,886][02117] Num frames 6900...
|
539 |
+
[2025-02-11 17:02:23,019][02117] Num frames 7000...
|
540 |
+
[2025-02-11 17:02:23,148][02117] Num frames 7100...
|
541 |
+
[2025-02-11 17:02:23,301][02117] Avg episode rewards: #0: 29.460, true rewards: #0: 11.960
|
542 |
+
[2025-02-11 17:02:23,303][02117] Avg episode reward: 29.460, avg true_objective: 11.960
|
543 |
+
[2025-02-11 17:02:23,336][02117] Num frames 7200...
|
544 |
+
[2025-02-11 17:02:23,461][02117] Num frames 7300...
|
545 |
+
[2025-02-11 17:02:23,588][02117] Num frames 7400...
|
546 |
+
[2025-02-11 17:02:23,713][02117] Num frames 7500...
|
547 |
+
[2025-02-11 17:02:23,842][02117] Num frames 7600...
|
548 |
+
[2025-02-11 17:02:23,973][02117] Num frames 7700...
|
549 |
+
[2025-02-11 17:02:24,102][02117] Num frames 7800...
|
550 |
+
[2025-02-11 17:02:24,230][02117] Num frames 7900...
|
551 |
+
[2025-02-11 17:02:24,355][02117] Num frames 8000...
|
552 |
+
[2025-02-11 17:02:24,481][02117] Num frames 8100...
|
553 |
+
[2025-02-11 17:02:24,610][02117] Num frames 8200...
|
554 |
+
[2025-02-11 17:02:24,738][02117] Num frames 8300...
|
555 |
+
[2025-02-11 17:02:24,863][02117] Num frames 8400...
|
556 |
+
[2025-02-11 17:02:24,995][02117] Num frames 8500...
|
557 |
+
[2025-02-11 17:02:25,124][02117] Num frames 8600...
|
558 |
+
[2025-02-11 17:02:25,253][02117] Num frames 8700...
|
559 |
+
[2025-02-11 17:02:25,324][02117] Avg episode rewards: #0: 30.303, true rewards: #0: 12.446
|
560 |
+
[2025-02-11 17:02:25,325][02117] Avg episode reward: 30.303, avg true_objective: 12.446
|
561 |
+
[2025-02-11 17:02:25,436][02117] Num frames 8800...
|
562 |
+
[2025-02-11 17:02:25,562][02117] Num frames 8900...
|
563 |
+
[2025-02-11 17:02:25,686][02117] Num frames 9000...
|
564 |
+
[2025-02-11 17:02:25,814][02117] Num frames 9100...
|
565 |
+
[2025-02-11 17:02:25,941][02117] Num frames 9200...
|
566 |
+
[2025-02-11 17:02:26,067][02117] Num frames 9300...
|
567 |
+
[2025-02-11 17:02:26,195][02117] Num frames 9400...
|
568 |
+
[2025-02-11 17:02:26,324][02117] Num frames 9500...
|
569 |
+
[2025-02-11 17:02:26,451][02117] Num frames 9600...
|
570 |
+
[2025-02-11 17:02:26,575][02117] Num frames 9700...
|
571 |
+
[2025-02-11 17:02:26,705][02117] Num frames 9800...
|
572 |
+
[2025-02-11 17:02:26,832][02117] Num frames 9900...
|
573 |
+
[2025-02-11 17:02:26,959][02117] Num frames 10000...
|
574 |
+
[2025-02-11 17:02:27,089][02117] Num frames 10100...
|
575 |
+
[2025-02-11 17:02:27,216][02117] Num frames 10200...
|
576 |
+
[2025-02-11 17:02:27,341][02117] Num frames 10300...
|
577 |
+
[2025-02-11 17:02:27,470][02117] Num frames 10400...
|
578 |
+
[2025-02-11 17:02:27,601][02117] Num frames 10500...
|
579 |
+
[2025-02-11 17:02:27,727][02117] Num frames 10600...
|
580 |
+
[2025-02-11 17:02:27,856][02117] Num frames 10700...
|
581 |
+
[2025-02-11 17:02:27,991][02117] Avg episode rewards: #0: 33.453, true rewards: #0: 13.454
|
582 |
+
[2025-02-11 17:02:27,993][02117] Avg episode reward: 33.453, avg true_objective: 13.454
|
583 |
+
[2025-02-11 17:02:28,046][02117] Num frames 10800...
|
584 |
+
[2025-02-11 17:02:28,173][02117] Num frames 10900...
|
585 |
+
[2025-02-11 17:02:28,299][02117] Num frames 11000...
|
586 |
+
[2025-02-11 17:02:28,426][02117] Num frames 11100...
|
587 |
+
[2025-02-11 17:02:28,549][02117] Num frames 11200...
|
588 |
+
[2025-02-11 17:02:28,676][02117] Num frames 11300...
|
589 |
+
[2025-02-11 17:02:28,802][02117] Num frames 11400...
|
590 |
+
[2025-02-11 17:02:28,941][02117] Avg episode rewards: #0: 31.296, true rewards: #0: 12.741
|
591 |
+
[2025-02-11 17:02:28,942][02117] Avg episode reward: 31.296, avg true_objective: 12.741
|
592 |
+
[2025-02-11 17:02:28,986][02117] Num frames 11500...
|
593 |
+
[2025-02-11 17:02:29,117][02117] Num frames 11600...
|
594 |
+
[2025-02-11 17:02:29,242][02117] Num frames 11700...
|
595 |
+
[2025-02-11 17:02:29,368][02117] Num frames 11800...
|
596 |
+
[2025-02-11 17:02:29,494][02117] Num frames 11900...
|
597 |
+
[2025-02-11 17:02:29,621][02117] Num frames 12000...
|
598 |
+
[2025-02-11 17:02:29,746][02117] Num frames 12100...
|
599 |
+
[2025-02-11 17:02:29,874][02117] Num frames 12200...
|
600 |
+
[2025-02-11 17:02:29,993][02117] Avg episode rewards: #0: 29.850, true rewards: #0: 12.250
|
601 |
+
[2025-02-11 17:02:29,994][02117] Avg episode reward: 29.850, avg true_objective: 12.250
|
602 |
+
[2025-02-11 17:02:59,239][02117] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|
603 |
+
[2025-02-11 17:04:57,900][02117] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
604 |
+
[2025-02-11 17:04:57,901][02117] Overriding arg 'num_workers' with value 1 passed from command line
|
605 |
+
[2025-02-11 17:04:57,902][02117] Adding new argument 'no_render'=True that is not in the saved config file!
|
606 |
+
[2025-02-11 17:04:57,904][02117] Adding new argument 'save_video'=True that is not in the saved config file!
|
607 |
+
[2025-02-11 17:04:57,905][02117] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
608 |
+
[2025-02-11 17:04:57,906][02117] Adding new argument 'video_name'=None that is not in the saved config file!
|
609 |
+
[2025-02-11 17:04:57,908][02117] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
610 |
+
[2025-02-11 17:04:57,909][02117] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
611 |
+
[2025-02-11 17:04:57,910][02117] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
612 |
+
[2025-02-11 17:04:57,912][02117] Adding new argument 'hf_repository'='mjm54/doom_health_gathering_supreme' that is not in the saved config file!
|
613 |
+
[2025-02-11 17:04:57,913][02117] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
614 |
+
[2025-02-11 17:04:57,914][02117] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
615 |
+
[2025-02-11 17:04:57,915][02117] Adding new argument 'train_script'=None that is not in the saved config file!
|
616 |
+
[2025-02-11 17:04:57,917][02117] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
617 |
+
[2025-02-11 17:04:57,918][02117] Using frameskip 1 and render_action_repeat=4 for evaluation
|
618 |
+
[2025-02-11 17:04:57,942][02117] RunningMeanStd input shape: (3, 72, 128)
|
619 |
+
[2025-02-11 17:04:57,945][02117] RunningMeanStd input shape: (1,)
|
620 |
+
[2025-02-11 17:04:57,956][02117] ConvEncoder: input_channels=3
|
621 |
+
[2025-02-11 17:04:57,993][02117] Conv encoder output size: 512
|
622 |
+
[2025-02-11 17:04:57,995][02117] Policy head output size: 512
|
623 |
+
[2025-02-11 17:04:58,017][02117] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
624 |
+
[2025-02-11 17:04:58,455][02117] Num frames 100...
|
625 |
+
[2025-02-11 17:04:58,579][02117] Num frames 200...
|
626 |
+
[2025-02-11 17:04:58,703][02117] Num frames 300...
|
627 |
+
[2025-02-11 17:04:58,829][02117] Num frames 400...
|
628 |
+
[2025-02-11 17:04:58,964][02117] Num frames 500...
|
629 |
+
[2025-02-11 17:04:59,100][02117] Num frames 600...
|
630 |
+
[2025-02-11 17:04:59,234][02117] Num frames 700...
|
631 |
+
[2025-02-11 17:04:59,368][02117] Num frames 800...
|
632 |
+
[2025-02-11 17:04:59,504][02117] Num frames 900...
|
633 |
+
[2025-02-11 17:04:59,636][02117] Num frames 1000...
|
634 |
+
[2025-02-11 17:04:59,768][02117] Num frames 1100...
|
635 |
+
[2025-02-11 17:04:59,906][02117] Num frames 1200...
|
636 |
+
[2025-02-11 17:05:00,038][02117] Num frames 1300...
|
637 |
+
[2025-02-11 17:05:00,165][02117] Num frames 1400...
|
638 |
+
[2025-02-11 17:05:00,296][02117] Num frames 1500...
|
639 |
+
[2025-02-11 17:05:00,423][02117] Num frames 1600...
|
640 |
+
[2025-02-11 17:05:00,491][02117] Avg episode rewards: #0: 35.090, true rewards: #0: 16.090
|
641 |
+
[2025-02-11 17:05:00,492][02117] Avg episode reward: 35.090, avg true_objective: 16.090
|
642 |
+
[2025-02-11 17:05:00,604][02117] Num frames 1700...
|
643 |
+
[2025-02-11 17:05:00,730][02117] Num frames 1800...
|
644 |
+
[2025-02-11 17:05:00,855][02117] Num frames 1900...
|
645 |
+
[2025-02-11 17:05:00,979][02117] Num frames 2000...
|
646 |
+
[2025-02-11 17:05:01,106][02117] Num frames 2100...
|
647 |
+
[2025-02-11 17:05:01,231][02117] Num frames 2200...
|
648 |
+
[2025-02-11 17:05:01,357][02117] Num frames 2300...
|
649 |
+
[2025-02-11 17:05:01,507][02117] Avg episode rewards: #0: 25.880, true rewards: #0: 11.880
|
650 |
+
[2025-02-11 17:05:01,508][02117] Avg episode reward: 25.880, avg true_objective: 11.880
|
651 |
+
[2025-02-11 17:05:01,539][02117] Num frames 2400...
|
652 |
+
[2025-02-11 17:05:01,666][02117] Num frames 2500...
|
653 |
+
[2025-02-11 17:05:01,794][02117] Num frames 2600...
|
654 |
+
[2025-02-11 17:05:01,921][02117] Num frames 2700...
|
655 |
+
[2025-02-11 17:05:02,050][02117] Num frames 2800...
|
656 |
+
[2025-02-11 17:05:02,175][02117] Num frames 2900...
|
657 |
+
[2025-02-11 17:05:02,301][02117] Num frames 3000...
|
658 |
+
[2025-02-11 17:05:02,428][02117] Num frames 3100...
|
659 |
+
[2025-02-11 17:05:02,552][02117] Num frames 3200...
|
660 |
+
[2025-02-11 17:05:02,618][02117] Avg episode rewards: #0: 23.360, true rewards: #0: 10.693
|
661 |
+
[2025-02-11 17:05:02,619][02117] Avg episode reward: 23.360, avg true_objective: 10.693
|
662 |
+
[2025-02-11 17:05:02,734][02117] Num frames 3300...
|
663 |
+
[2025-02-11 17:05:02,859][02117] Num frames 3400...
|
664 |
+
[2025-02-11 17:05:02,985][02117] Num frames 3500...
|
665 |
+
[2025-02-11 17:05:03,110][02117] Num frames 3600...
|
666 |
+
[2025-02-11 17:05:03,236][02117] Num frames 3700...
|
667 |
+
[2025-02-11 17:05:03,363][02117] Num frames 3800...
|
668 |
+
[2025-02-11 17:05:03,488][02117] Num frames 3900...
|
669 |
+
[2025-02-11 17:05:03,612][02117] Num frames 4000...
|
670 |
+
[2025-02-11 17:05:03,739][02117] Num frames 4100...
|
671 |
+
[2025-02-11 17:05:03,865][02117] Num frames 4200...
|
672 |
+
[2025-02-11 17:05:03,993][02117] Num frames 4300...
|
673 |
+
[2025-02-11 17:05:04,120][02117] Num frames 4400...
|
674 |
+
[2025-02-11 17:05:04,247][02117] Num frames 4500...
|
675 |
+
[2025-02-11 17:05:04,327][02117] Avg episode rewards: #0: 26.300, true rewards: #0: 11.300
|
676 |
+
[2025-02-11 17:05:04,329][02117] Avg episode reward: 26.300, avg true_objective: 11.300
|
677 |
+
[2025-02-11 17:05:04,433][02117] Num frames 4600...
|
678 |
+
[2025-02-11 17:05:04,558][02117] Num frames 4700...
|
679 |
+
[2025-02-11 17:05:04,684][02117] Num frames 4800...
|
680 |
+
[2025-02-11 17:05:04,808][02117] Num frames 4900...
|
681 |
+
[2025-02-11 17:05:04,934][02117] Num frames 5000...
|
682 |
+
[2025-02-11 17:05:05,064][02117] Num frames 5100...
|
683 |
+
[2025-02-11 17:05:05,189][02117] Num frames 5200...
|
684 |
+
[2025-02-11 17:05:05,316][02117] Num frames 5300...
|
685 |
+
[2025-02-11 17:05:05,445][02117] Num frames 5400...
|
686 |
+
[2025-02-11 17:05:05,572][02117] Num frames 5500...
|
687 |
+
[2025-02-11 17:05:05,699][02117] Num frames 5600...
|
688 |
+
[2025-02-11 17:05:05,765][02117] Avg episode rewards: #0: 26.016, true rewards: #0: 11.216
|
689 |
+
[2025-02-11 17:05:05,766][02117] Avg episode reward: 26.016, avg true_objective: 11.216
|
690 |
+
[2025-02-11 17:05:05,881][02117] Num frames 5700...
|
691 |
+
[2025-02-11 17:05:06,004][02117] Num frames 5800...
|
692 |
+
[2025-02-11 17:05:06,129][02117] Num frames 5900...
|
693 |
+
[2025-02-11 17:05:06,255][02117] Num frames 6000...
|
694 |
+
[2025-02-11 17:05:06,379][02117] Num frames 6100...
|
695 |
+
[2025-02-11 17:05:06,506][02117] Num frames 6200...
|
696 |
+
[2025-02-11 17:05:06,633][02117] Num frames 6300...
|
697 |
+
[2025-02-11 17:05:06,758][02117] Num frames 6400...
|
698 |
+
[2025-02-11 17:05:06,885][02117] Num frames 6500...
|
699 |
+
[2025-02-11 17:05:07,017][02117] Num frames 6600...
|
700 |
+
[2025-02-11 17:05:07,145][02117] Num frames 6700...
|
701 |
+
[2025-02-11 17:05:07,271][02117] Num frames 6800...
|
702 |
+
[2025-02-11 17:05:07,401][02117] Num frames 6900...
|
703 |
+
[2025-02-11 17:05:07,529][02117] Num frames 7000...
|
704 |
+
[2025-02-11 17:05:07,660][02117] Num frames 7100...
|
705 |
+
[2025-02-11 17:05:07,787][02117] Num frames 7200...
|
706 |
+
[2025-02-11 17:05:07,913][02117] Num frames 7300...
|
707 |
+
[2025-02-11 17:05:08,043][02117] Num frames 7400...
|
708 |
+
[2025-02-11 17:05:08,174][02117] Num frames 7500...
|
709 |
+
[2025-02-11 17:05:08,300][02117] Num frames 7600...
|
710 |
+
[2025-02-11 17:05:08,427][02117] Num frames 7700...
|
711 |
+
[2025-02-11 17:05:08,492][02117] Avg episode rewards: #0: 31.180, true rewards: #0: 12.847
|
712 |
+
[2025-02-11 17:05:08,493][02117] Avg episode reward: 31.180, avg true_objective: 12.847
|
713 |
+
[2025-02-11 17:05:08,610][02117] Num frames 7800...
|
714 |
+
[2025-02-11 17:05:08,735][02117] Num frames 7900...
|
715 |
+
[2025-02-11 17:05:08,857][02117] Num frames 8000...
|
716 |
+
[2025-02-11 17:05:08,983][02117] Num frames 8100...
|
717 |
+
[2025-02-11 17:05:09,114][02117] Num frames 8200...
|
718 |
+
[2025-02-11 17:05:09,240][02117] Num frames 8300...
|
719 |
+
[2025-02-11 17:05:09,367][02117] Num frames 8400...
|
720 |
+
[2025-02-11 17:05:09,493][02117] Num frames 8500...
|
721 |
+
[2025-02-11 17:05:09,624][02117] Num frames 8600...
|
722 |
+
[2025-02-11 17:05:09,750][02117] Num frames 8700...
|
723 |
+
[2025-02-11 17:05:09,878][02117] Num frames 8800...
|
724 |
+
[2025-02-11 17:05:10,006][02117] Num frames 8900...
|
725 |
+
[2025-02-11 17:05:10,133][02117] Num frames 9000...
|
726 |
+
[2025-02-11 17:05:10,259][02117] Num frames 9100...
|
727 |
+
[2025-02-11 17:05:10,398][02117] Num frames 9200...
|
728 |
+
[2025-02-11 17:05:10,526][02117] Num frames 9300...
|
729 |
+
[2025-02-11 17:05:10,653][02117] Num frames 9400...
|
730 |
+
[2025-02-11 17:05:10,782][02117] Num frames 9500...
|
731 |
+
[2025-02-11 17:05:10,911][02117] Num frames 9600...
|
732 |
+
[2025-02-11 17:05:11,002][02117] Avg episode rewards: #0: 33.326, true rewards: #0: 13.754
|
733 |
+
[2025-02-11 17:05:11,003][02117] Avg episode reward: 33.326, avg true_objective: 13.754
|
734 |
+
[2025-02-11 17:05:11,097][02117] Num frames 9700...
|
735 |
+
[2025-02-11 17:05:11,233][02117] Num frames 9800...
|
736 |
+
[2025-02-11 17:05:11,369][02117] Num frames 9900...
|
737 |
+
[2025-02-11 17:05:11,508][02117] Num frames 10000...
|
738 |
+
[2025-02-11 17:05:11,647][02117] Num frames 10100...
|
739 |
+
[2025-02-11 17:05:11,779][02117] Num frames 10200...
|
740 |
+
[2025-02-11 17:05:11,906][02117] Num frames 10300...
|
741 |
+
[2025-02-11 17:05:12,035][02117] Num frames 10400...
|
742 |
+
[2025-02-11 17:05:12,160][02117] Num frames 10500...
|
743 |
+
[2025-02-11 17:05:12,289][02117] Num frames 10600...
|
744 |
+
[2025-02-11 17:05:12,383][02117] Avg episode rewards: #0: 32.164, true rewards: #0: 13.289
|
745 |
+
[2025-02-11 17:05:12,385][02117] Avg episode reward: 32.164, avg true_objective: 13.289
|
746 |
+
[2025-02-11 17:05:12,472][02117] Num frames 10700...
|
747 |
+
[2025-02-11 17:05:12,601][02117] Num frames 10800...
|
748 |
+
[2025-02-11 17:05:12,727][02117] Num frames 10900...
|
749 |
+
[2025-02-11 17:05:12,854][02117] Num frames 11000...
|
750 |
+
[2025-02-11 17:05:12,981][02117] Num frames 11100...
|
751 |
+
[2025-02-11 17:05:13,112][02117] Num frames 11200...
|
752 |
+
[2025-02-11 17:05:13,238][02117] Num frames 11300...
|
753 |
+
[2025-02-11 17:05:13,364][02117] Num frames 11400...
|
754 |
+
[2025-02-11 17:05:13,492][02117] Num frames 11500...
|
755 |
+
[2025-02-11 17:05:13,621][02117] Num frames 11600...
|
756 |
+
[2025-02-11 17:05:13,747][02117] Num frames 11700...
|
757 |
+
[2025-02-11 17:05:13,874][02117] Num frames 11800...
|
758 |
+
[2025-02-11 17:05:14,015][02117] Num frames 11900...
|
759 |
+
[2025-02-11 17:05:14,149][02117] Num frames 12000...
|
760 |
+
[2025-02-11 17:05:14,288][02117] Num frames 12100...
|
761 |
+
[2025-02-11 17:05:14,423][02117] Num frames 12200...
|
762 |
+
[2025-02-11 17:05:14,524][02117] Avg episode rewards: #0: 32.929, true rewards: #0: 13.596
|
763 |
+
[2025-02-11 17:05:14,526][02117] Avg episode reward: 32.929, avg true_objective: 13.596
|
764 |
+
[2025-02-11 17:05:14,607][02117] Num frames 12300...
|
765 |
+
[2025-02-11 17:05:14,735][02117] Num frames 12400...
|
766 |
+
[2025-02-11 17:05:14,867][02117] Num frames 12500...
|
767 |
+
[2025-02-11 17:05:15,000][02117] Num frames 12600...
|
768 |
+
[2025-02-11 17:05:15,131][02117] Num frames 12700...
|
769 |
+
[2025-02-11 17:05:15,261][02117] Num frames 12800...
|
770 |
+
[2025-02-11 17:05:15,390][02117] Num frames 12900...
|
771 |
+
[2025-02-11 17:05:15,515][02117] Num frames 13000...
|
772 |
+
[2025-02-11 17:05:15,643][02117] Num frames 13100...
|
773 |
+
[2025-02-11 17:05:15,776][02117] Num frames 13200...
|
774 |
+
[2025-02-11 17:05:15,906][02117] Num frames 13300...
|
775 |
+
[2025-02-11 17:05:16,034][02117] Num frames 13400...
|
776 |
+
[2025-02-11 17:05:16,163][02117] Num frames 13500...
|
777 |
+
[2025-02-11 17:05:16,292][02117] Num frames 13600...
|
778 |
+
[2025-02-11 17:05:16,420][02117] Num frames 13700...
|
779 |
+
[2025-02-11 17:05:16,549][02117] Num frames 13800...
|
780 |
+
[2025-02-11 17:05:16,719][02117] Avg episode rewards: #0: 34.187, true rewards: #0: 13.887
|
781 |
+
[2025-02-11 17:05:16,721][02117] Avg episode reward: 34.187, avg true_objective: 13.887
|
782 |
+
[2025-02-11 17:05:49,668][02117] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|