|
import os |
|
import streamlit as st |
|
import fitz |
|
import faiss |
|
import numpy as np |
|
import pickle |
|
from sentence_transformers import SentenceTransformer |
|
import tiktoken |
|
from groq import Groq |
|
|
|
|
|
embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
def extract_text_from_pdf(pdf_file): |
|
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") |
|
text = "\n".join([page.get_text("text") for page in doc]) |
|
return text |
|
|
|
|
|
def chunk_text(text, chunk_size=512): |
|
tokenizer = tiktoken.get_encoding("cl100k_base") |
|
tokens = tokenizer.encode(text) |
|
chunks = [tokens[i:i+chunk_size] for i in range(0, len(tokens), chunk_size)] |
|
return ["".join(tokenizer.decode(chunk)) for chunk in chunks] |
|
|
|
|
|
def generate_embeddings(chunks): |
|
return embed_model.encode(chunks, convert_to_numpy=True) |
|
|
|
|
|
def store_in_faiss(embeddings, chunks): |
|
dimension = embeddings.shape[1] |
|
index = faiss.IndexFlatL2(dimension) |
|
index.add(embeddings) |
|
with open("faiss_index.pkl", "wb") as f: |
|
pickle.dump((index, chunks), f) |
|
return index |
|
|
|
|
|
def load_faiss(): |
|
with open("faiss_index.pkl", "rb") as f: |
|
index, chunks = pickle.load(f) |
|
return index, chunks |
|
|
|
|
|
def search_faiss(query, top_k=3): |
|
query_embedding = embed_model.encode([query]) |
|
index, chunks = load_faiss() |
|
_, indices = index.search(query_embedding, top_k) |
|
results = [chunks[i] for i in indices[0]] |
|
return results |
|
|
|
|
|
def query_groq(query): |
|
client = Groq(api_key=os.getenv("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")) |
|
response = client.chat.completions.create( |
|
messages=[{"role": "user", "content": query}], |
|
model="llama-3.3-70b-versatile" |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
st.title("RAG-based PDF Q&A App") |
|
|
|
uploaded_file = st.file_uploader("Upload a PDF", type="pdf") |
|
if uploaded_file: |
|
st.write("Processing PDF...") |
|
text = extract_text_from_pdf(uploaded_file) |
|
chunks = chunk_text(text) |
|
embeddings = generate_embeddings(chunks) |
|
store_in_faiss(embeddings, chunks) |
|
st.success("PDF processed and indexed!") |
|
|
|
query = st.text_input("Ask a question:") |
|
if query: |
|
retrieved_chunks = search_faiss(query) |
|
context = " ".join(retrieved_chunks) |
|
response = query_groq(f"Context: {context} \n Question: {query}") |
|
st.write("### Answer:") |
|
st.write(response) |
|
|