Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
library_name: xgboost
|
4 |
+
tags:
|
5 |
+
- regression
|
6 |
+
- soulprint
|
7 |
+
- ayo
|
8 |
+
- xgboost
|
9 |
+
datasets:
|
10 |
+
- custom
|
11 |
+
metrics:
|
12 |
+
- mse
|
13 |
+
- r2
|
14 |
+
model_name: Ayo XGB Soulprint Model
|
15 |
+
model_file: Ayo_xgb_model.json
|
16 |
+
license: mit
|
17 |
+
---
|
18 |
+
|
19 |
+
# Ayo Soulprint Regression Model
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
- **Type:** XGBoost Regressor
|
23 |
+
- **Embeddings:** all-mpnet-base-v2 (SentenceTransformer)
|
24 |
+
- **Trained on:** Ayo Soulprint dataset (~1,100 rows, balanced bins)
|
25 |
+
- **Target:** Continuous score from 0.00 → 1.00
|
26 |
+
|
27 |
+
## Performance
|
28 |
+
- **MSE:** 0.0154
|
29 |
+
- **R²:** 0.801
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
```python
|
33 |
+
import xgboost as xgb
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
from huggingface_hub import hf_hub_download
|
36 |
+
|
37 |
+
# -----------------------------
|
38 |
+
# 1. Download model from Hugging Face Hub
|
39 |
+
# -----------------------------
|
40 |
+
REPO_ID = "mjpsm/Ayo-xgb-model"
|
41 |
+
FILENAME = "Ayo_xgb_model.json"
|
42 |
+
|
43 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
44 |
+
|
45 |
+
# -----------------------------
|
46 |
+
# 2. Load model + embedder
|
47 |
+
# -----------------------------
|
48 |
+
model = xgb.XGBRegressor()
|
49 |
+
model.load_model(model_path)
|
50 |
+
|
51 |
+
embedder = SentenceTransformer("all-mpnet-base-v2")
|
52 |
+
|
53 |
+
# -----------------------------
|
54 |
+
# 3. Example prediction
|
55 |
+
# -----------------------------
|
56 |
+
text = "The crowd cheered loudly as the drums pounded."
|
57 |
+
embedding = embedder.encode([text])
|
58 |
+
score = model.predict(embedding)[0]
|
59 |
+
|
60 |
+
print("Predicted Ayo Score:", round(float(score), 3))
|
61 |
+
```
|