mjpsm commited on
Commit
abb3cd2
·
verified ·
1 Parent(s): 785d829

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - regression
6
+ - xgboost
7
+ - soulprint
8
+ - imani
9
+ datasets:
10
+ - custom
11
+ metrics:
12
+ - mse
13
+ - r2
14
+ model-index:
15
+ - name: Imani XGBoost Regression Model
16
+ results:
17
+ - task:
18
+ type: regression
19
+ name: Soulprint Archetype Scoring
20
+ dataset:
21
+ name: Imani-regression-data
22
+ type: custom
23
+ metrics:
24
+ - name: MSE
25
+ type: mse
26
+ value: 0.00866
27
+ - name: R²
28
+ type: r2
29
+ value: 0.892
30
+ ---
31
+
32
+ # 🕊️ Imani XGBoost Regression Model
33
+
34
+ This model is part of the **Soulprint archetype system**, designed to measure the presence of the **Imani (Faithful)** archetype in text.
35
+ It outputs a **score between 0.0 and 1.0** that reflects the degree of *faith, resilience, and affirmation* expressed.
36
+
37
+ - **Framework:** XGBoost
38
+ - **Embeddings:** SentenceTransformer (`all-mpnet-base-v2`)
39
+ - **Training Data Size:** 819 samples
40
+ - **Balanced dataset:** Low, mid, and high Imani scores evenly distributed (~33% each)
41
+
42
+ ---
43
+
44
+ ## 🧾 Model Details
45
+
46
+ - **Archetype:** Imani (Faithful)
47
+ - **Description:** Sacred conviction and hope, even in adversity.
48
+ - **Traits captured:** Encouraging, spiritual, consistent, compassionate.
49
+ - **Perspective:** *Faith is the seed, action is the rain.*
50
+ - **Output range:** `0.0 – 1.0`
51
+
52
+ ---
53
+
54
+ ## 📊 Training Results
55
+
56
+ - **MSE:** `0.00866`
57
+ - **R²:** `0.892`
58
+
59
+ These metrics indicate that the model is highly accurate, with predictions averaging less than `0.1` away from true labels on the 0–1 scale.
60
+
61
+ ---
62
+
63
+ ## 🚀 Usage
64
+
65
+ You can load the model directly from Hugging Face Hub and run predictions:
66
+
67
+ ```python
68
+ import xgboost as xgb
69
+ from sentence_transformers import SentenceTransformer
70
+ from huggingface_hub import hf_hub_download
71
+
72
+ # -----------------------------
73
+ # 1. Download model from Hugging Face
74
+ # -----------------------------
75
+ REPO_ID = "mjpsm/Imani-xgb-model"
76
+ FILENAME = "Imani_xgb_model.json"
77
+
78
+ model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
79
+
80
+ # -----------------------------
81
+ # 2. Load Model + Embedder
82
+ # -----------------------------
83
+ model = xgb.XGBRegressor()
84
+ model.load_model(model_path)
85
+
86
+ embedder = SentenceTransformer("all-mpnet-base-v2")
87
+
88
+ # -----------------------------
89
+ # 3. Example Prediction
90
+ # -----------------------------
91
+ text = "I reminded my cousin that storms always pass."
92
+ embedding = embedder.encode([text])
93
+ score = model.predict(embedding)[0]
94
+
95
+ print("Predicted Imani Score:", round(float(score), 3))
96
+ ```