Update README.md
Browse files
README.md
CHANGED
|
@@ -87,13 +87,26 @@ This means predictions are typically within ±0.12 of the true score, explaining
|
|
| 87 |
```python
|
| 88 |
import joblib
|
| 89 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
embedder = SentenceTransformer("all-mpnet-base-v2")
|
| 94 |
|
| 95 |
-
#
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
embedding = embedder.encode([text])
|
| 98 |
score = model.predict(embedding)[0]
|
| 99 |
|
|
|
|
| 87 |
```python
|
| 88 |
import joblib
|
| 89 |
from sentence_transformers import SentenceTransformer
|
| 90 |
+
from huggingface_hub import hf_hub_download
|
| 91 |
|
| 92 |
+
# -----------------------------
|
| 93 |
+
# 1. Download model from Hugging Face Hub
|
| 94 |
+
# -----------------------------
|
| 95 |
+
REPO_ID = "mjpsm/Sankofa-xgb-model"
|
| 96 |
+
FILENAME = "Sankofa_xgb_model.pkl"
|
| 97 |
+
|
| 98 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
| 99 |
+
|
| 100 |
+
# -----------------------------
|
| 101 |
+
# 2. Load model + embedder
|
| 102 |
+
# -----------------------------
|
| 103 |
+
model = joblib.load(model_path)
|
| 104 |
embedder = SentenceTransformer("all-mpnet-base-v2")
|
| 105 |
|
| 106 |
+
# -----------------------------
|
| 107 |
+
# 3. Example prediction
|
| 108 |
+
# -----------------------------
|
| 109 |
+
text = "The group studied old archives before planning, ensuring past mistakes were not repeated."
|
| 110 |
embedding = embedder.encode([text])
|
| 111 |
score = model.predict(embedding)[0]
|
| 112 |
|