mjpsm commited on
Commit
df4177b
·
verified ·
1 Parent(s): 64a3ad9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - regression
6
+ - soulprint
7
+ - tamu
8
+ - xgboost
9
+ - embeddings
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ - mse
14
+ - r2
15
+ model-index:
16
+ - name: Tamu-xgb-model
17
+ results:
18
+ - task:
19
+ type: regression
20
+ name: Predicting Tamu Scores
21
+ dataset:
22
+ name: Soulprint Tamu Dataset
23
+ type: custom
24
+ size: 912
25
+ metrics:
26
+ - name: MSE
27
+ type: mse
28
+ value: 0.0167
29
+ - name: R²
30
+ type: r2
31
+ value: 0.803
32
+ ---
33
+
34
+
35
+
36
+
37
+ # Tamu XGBoost Regression Model
38
+
39
+ ## Overview
40
+ The **Tamu Regression Model** is part of the Soulprint archetype system, designed to measure expressions of *lightness, uplift, and shared resonance* in text.
41
+ It was trained on a **balanced dataset of 912 rows**, evenly distributed across three continuous output bins:
42
+
43
+ - **Low (0.00–0.33)**: minimal energy, muted or subdued responses
44
+ - **Mid (0.34–0.66)**: moderate energy, rhythmic or collective responses
45
+ - **High (0.67–1.00)**: elevated energy, loud or vibrant expressions
46
+
47
+ The model outputs a **continuous score between 0.00 and 1.00**, where higher values correspond to stronger expressions of Tamu energy.
48
+
49
+ ---
50
+
51
+ ## Training Details
52
+ - **Dataset size:** 912 rows (balanced: 304 per bin)
53
+ - **Embedding model:** `sentence-transformers/all-mpnet-base-v2`
54
+ - **Regressor:** XGBoost Regressor (`reg:squarederror`)
55
+ - **Metrics achieved:**
56
+ - **MSE:** 0.0167
57
+ - **R²:** 0.803
58
+
59
+ ---
60
+
61
+ ## Usage
62
+ ### Inference Example
63
+ ```python
64
+ import xgboost as xgb
65
+ from sentence_transformers import SentenceTransformer
66
+ from huggingface_hub import hf_hub_download
67
+
68
+ # -----------------------------
69
+ # 1. Download model from Hugging Face Hub
70
+ # -----------------------------
71
+ REPO_ID = "mjpsm/Tamu-xgb-model"
72
+ FILENAME = "Tamu_xgb_model.json"
73
+
74
+ model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
75
+
76
+ # -----------------------------
77
+ # 2. Load model + embedder
78
+ # -----------------------------
79
+ model = xgb.XGBRegressor()
80
+ model.load_model(model_path)
81
+
82
+ embedder = SentenceTransformer("all-mpnet-base-v2")
83
+
84
+ # -----------------------------
85
+ # 3. Example prediction
86
+ # -----------------------------
87
+ text = "Inside the library, the pages turned slowly as students whispered."
88
+ embedding = embedder.encode([text])
89
+ score = model.predict(embedding)[0]
90
+
91
+ print("Predicted Tamu Score:", round(float(score), 3))
92
+ ```