Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- regression
|
6 |
+
- soulprint
|
7 |
+
- tamu
|
8 |
+
- xgboost
|
9 |
+
- embeddings
|
10 |
+
datasets:
|
11 |
+
- custom
|
12 |
+
metrics:
|
13 |
+
- mse
|
14 |
+
- r2
|
15 |
+
model-index:
|
16 |
+
- name: Tamu-xgb-model
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: regression
|
20 |
+
name: Predicting Tamu Scores
|
21 |
+
dataset:
|
22 |
+
name: Soulprint Tamu Dataset
|
23 |
+
type: custom
|
24 |
+
size: 912
|
25 |
+
metrics:
|
26 |
+
- name: MSE
|
27 |
+
type: mse
|
28 |
+
value: 0.0167
|
29 |
+
- name: R²
|
30 |
+
type: r2
|
31 |
+
value: 0.803
|
32 |
+
---
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
# Tamu XGBoost Regression Model
|
38 |
+
|
39 |
+
## Overview
|
40 |
+
The **Tamu Regression Model** is part of the Soulprint archetype system, designed to measure expressions of *lightness, uplift, and shared resonance* in text.
|
41 |
+
It was trained on a **balanced dataset of 912 rows**, evenly distributed across three continuous output bins:
|
42 |
+
|
43 |
+
- **Low (0.00–0.33)**: minimal energy, muted or subdued responses
|
44 |
+
- **Mid (0.34–0.66)**: moderate energy, rhythmic or collective responses
|
45 |
+
- **High (0.67–1.00)**: elevated energy, loud or vibrant expressions
|
46 |
+
|
47 |
+
The model outputs a **continuous score between 0.00 and 1.00**, where higher values correspond to stronger expressions of Tamu energy.
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## Training Details
|
52 |
+
- **Dataset size:** 912 rows (balanced: 304 per bin)
|
53 |
+
- **Embedding model:** `sentence-transformers/all-mpnet-base-v2`
|
54 |
+
- **Regressor:** XGBoost Regressor (`reg:squarederror`)
|
55 |
+
- **Metrics achieved:**
|
56 |
+
- **MSE:** 0.0167
|
57 |
+
- **R²:** 0.803
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## Usage
|
62 |
+
### Inference Example
|
63 |
+
```python
|
64 |
+
import xgboost as xgb
|
65 |
+
from sentence_transformers import SentenceTransformer
|
66 |
+
from huggingface_hub import hf_hub_download
|
67 |
+
|
68 |
+
# -----------------------------
|
69 |
+
# 1. Download model from Hugging Face Hub
|
70 |
+
# -----------------------------
|
71 |
+
REPO_ID = "mjpsm/Tamu-xgb-model"
|
72 |
+
FILENAME = "Tamu_xgb_model.json"
|
73 |
+
|
74 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
75 |
+
|
76 |
+
# -----------------------------
|
77 |
+
# 2. Load model + embedder
|
78 |
+
# -----------------------------
|
79 |
+
model = xgb.XGBRegressor()
|
80 |
+
model.load_model(model_path)
|
81 |
+
|
82 |
+
embedder = SentenceTransformer("all-mpnet-base-v2")
|
83 |
+
|
84 |
+
# -----------------------------
|
85 |
+
# 3. Example prediction
|
86 |
+
# -----------------------------
|
87 |
+
text = "Inside the library, the pages turned slowly as students whispered."
|
88 |
+
embedding = embedder.encode([text])
|
89 |
+
score = model.predict(embedding)[0]
|
90 |
+
|
91 |
+
print("Predicted Tamu Score:", round(float(score), 3))
|
92 |
+
```
|