Upload folder using huggingface_hub
Browse files- README.md +28 -0
- chat_template.jinja +4 -0
- config.json +278 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- model.safetensors.index.json +772 -0
- modeling_lfm2_vl.py +688 -0
- preprocessor_config.json +27 -0
- processing_lfm2_vl.py +645 -0
- processor_config.json +18 -0
- special_tokens_map.json +27 -0
- tokenizer.json +0 -0
- tokenizer_config.json +4088 -0
README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: other
|
| 4 |
+
license_name: lfm1.0
|
| 5 |
+
license_link: LICENSE
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
pipeline_tag: image-text-to-text
|
| 9 |
+
tags:
|
| 10 |
+
- liquid
|
| 11 |
+
- lfm2
|
| 12 |
+
- lfm2-vl
|
| 13 |
+
- edge
|
| 14 |
+
- mlx
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# mlx-community/LFM2-VL-1.6B-8bit
|
| 18 |
+
This model was converted to MLX format from [`LiquidAI/LFM2-VL-1.6B`]() using mlx-vlm version **0.3.2**.
|
| 19 |
+
Refer to the [original model card](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) for more details on the model.
|
| 20 |
+
## Use with mlx
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
pip install -U mlx-vlm
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
python -m mlx_vlm.generate --model mlx-community/LFM2-VL-1.6B-8bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image>
|
| 28 |
+
```
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{bos_token}}{% for message in messages %}{{'<|im_start|>' + message['role'] + '
|
| 2 |
+
'}}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' %}{{ '<image>' }}{% elif content['type'] == 'text' %}{{ content['text'] }}{% endif %}{% endfor %}{% endif %}{{'<|im_end|>
|
| 3 |
+
'}}{% endfor %}{% if add_generation_prompt %}{{'<|im_start|>assistant
|
| 4 |
+
' }}{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_cross_attention": false,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Lfm2VlForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "modeling_lfm2_vl.Lfm2VlConfig",
|
| 8 |
+
"AutoModelForImageTextToText": "modeling_lfm2_vl.Lfm2VlForConditionalGeneration"
|
| 9 |
+
},
|
| 10 |
+
"bad_words_ids": null,
|
| 11 |
+
"begin_suppress_tokens": null,
|
| 12 |
+
"bos_token_id": null,
|
| 13 |
+
"chunk_size_feed_forward": 0,
|
| 14 |
+
"cross_attention_hidden_size": null,
|
| 15 |
+
"decoder_start_token_id": null,
|
| 16 |
+
"diversity_penalty": 0.0,
|
| 17 |
+
"do_image_splitting": true,
|
| 18 |
+
"do_sample": false,
|
| 19 |
+
"downsample_factor": 2,
|
| 20 |
+
"early_stopping": false,
|
| 21 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 22 |
+
"encoder_patch_size": 16,
|
| 23 |
+
"eos_token_id": null,
|
| 24 |
+
"exponential_decay_length_penalty": null,
|
| 25 |
+
"finetuning_task": null,
|
| 26 |
+
"forced_bos_token_id": null,
|
| 27 |
+
"forced_eos_token_id": null,
|
| 28 |
+
"id2label": {
|
| 29 |
+
"0": "LABEL_0",
|
| 30 |
+
"1": "LABEL_1"
|
| 31 |
+
},
|
| 32 |
+
"image_token_index": 396,
|
| 33 |
+
"is_decoder": false,
|
| 34 |
+
"is_encoder_decoder": false,
|
| 35 |
+
"label2id": {
|
| 36 |
+
"LABEL_0": 0,
|
| 37 |
+
"LABEL_1": 1
|
| 38 |
+
},
|
| 39 |
+
"length_penalty": 1.0,
|
| 40 |
+
"max_image_tokens": 256,
|
| 41 |
+
"max_length": 20,
|
| 42 |
+
"max_num_patches": 1024,
|
| 43 |
+
"max_pixels_tolerance": 1.5,
|
| 44 |
+
"max_tiles": 10,
|
| 45 |
+
"min_image_tokens": 64,
|
| 46 |
+
"min_length": 0,
|
| 47 |
+
"min_tiles": 2,
|
| 48 |
+
"model_type": "lfm2-vl",
|
| 49 |
+
"no_repeat_ngram_size": 0,
|
| 50 |
+
"num_beam_groups": 1,
|
| 51 |
+
"num_beams": 1,
|
| 52 |
+
"num_return_sequences": 1,
|
| 53 |
+
"output_attentions": false,
|
| 54 |
+
"output_hidden_states": false,
|
| 55 |
+
"output_scores": false,
|
| 56 |
+
"pad_token_id": null,
|
| 57 |
+
"prefix": null,
|
| 58 |
+
"problem_type": null,
|
| 59 |
+
"projector_bias": true,
|
| 60 |
+
"projector_hidden_act": "gelu",
|
| 61 |
+
"projector_hidden_size": 2560,
|
| 62 |
+
"pruned_heads": {},
|
| 63 |
+
"quantization": {
|
| 64 |
+
"group_size": 64,
|
| 65 |
+
"bits": 8
|
| 66 |
+
},
|
| 67 |
+
"quantization_config": {
|
| 68 |
+
"group_size": 64,
|
| 69 |
+
"bits": 8
|
| 70 |
+
},
|
| 71 |
+
"remove_invalid_values": false,
|
| 72 |
+
"repetition_penalty": 1.0,
|
| 73 |
+
"return_dict": true,
|
| 74 |
+
"return_dict_in_generate": false,
|
| 75 |
+
"sep_token_id": null,
|
| 76 |
+
"suppress_tokens": null,
|
| 77 |
+
"task_specific_params": null,
|
| 78 |
+
"temperature": 1.0,
|
| 79 |
+
"text_config": {
|
| 80 |
+
"vocab_size": 65536,
|
| 81 |
+
"hidden_size": 2048,
|
| 82 |
+
"num_hidden_layers": 16,
|
| 83 |
+
"rope_theta": 1000000.0,
|
| 84 |
+
"max_position_embeddings": 128000,
|
| 85 |
+
"use_cache": true,
|
| 86 |
+
"norm_eps": 1e-05,
|
| 87 |
+
"initializer_range": 0.02,
|
| 88 |
+
"num_attention_heads": 32,
|
| 89 |
+
"num_key_value_heads": 8,
|
| 90 |
+
"conv_bias": false,
|
| 91 |
+
"conv_L_cache": 3,
|
| 92 |
+
"intermediate_size": 12288,
|
| 93 |
+
"block_multiple_of": 256,
|
| 94 |
+
"block_ffn_dim_multiplier": 1.0,
|
| 95 |
+
"block_auto_adjust_ff_dim": true,
|
| 96 |
+
"layer_types": [
|
| 97 |
+
"conv",
|
| 98 |
+
"conv",
|
| 99 |
+
"full_attention",
|
| 100 |
+
"conv",
|
| 101 |
+
"conv",
|
| 102 |
+
"full_attention",
|
| 103 |
+
"conv",
|
| 104 |
+
"conv",
|
| 105 |
+
"full_attention",
|
| 106 |
+
"conv",
|
| 107 |
+
"full_attention",
|
| 108 |
+
"conv",
|
| 109 |
+
"full_attention",
|
| 110 |
+
"conv",
|
| 111 |
+
"full_attention",
|
| 112 |
+
"conv"
|
| 113 |
+
],
|
| 114 |
+
"return_dict": true,
|
| 115 |
+
"output_hidden_states": false,
|
| 116 |
+
"torchscript": false,
|
| 117 |
+
"torch_dtype": "bfloat16",
|
| 118 |
+
"pruned_heads": {},
|
| 119 |
+
"tie_word_embeddings": true,
|
| 120 |
+
"chunk_size_feed_forward": 0,
|
| 121 |
+
"is_encoder_decoder": false,
|
| 122 |
+
"is_decoder": false,
|
| 123 |
+
"cross_attention_hidden_size": null,
|
| 124 |
+
"add_cross_attention": false,
|
| 125 |
+
"tie_encoder_decoder": false,
|
| 126 |
+
"architectures": [
|
| 127 |
+
"Lfm2ForCausalLM"
|
| 128 |
+
],
|
| 129 |
+
"finetuning_task": null,
|
| 130 |
+
"id2label": {
|
| 131 |
+
"0": "LABEL_0",
|
| 132 |
+
"1": "LABEL_1"
|
| 133 |
+
},
|
| 134 |
+
"label2id": {
|
| 135 |
+
"LABEL_0": 0,
|
| 136 |
+
"LABEL_1": 1
|
| 137 |
+
},
|
| 138 |
+
"task_specific_params": null,
|
| 139 |
+
"problem_type": null,
|
| 140 |
+
"tokenizer_class": null,
|
| 141 |
+
"prefix": null,
|
| 142 |
+
"bos_token_id": 1,
|
| 143 |
+
"pad_token_id": 0,
|
| 144 |
+
"eos_token_id": 7,
|
| 145 |
+
"sep_token_id": null,
|
| 146 |
+
"decoder_start_token_id": null,
|
| 147 |
+
"max_length": 20,
|
| 148 |
+
"min_length": 0,
|
| 149 |
+
"do_sample": false,
|
| 150 |
+
"early_stopping": false,
|
| 151 |
+
"num_beams": 1,
|
| 152 |
+
"num_beam_groups": 1,
|
| 153 |
+
"diversity_penalty": 0.0,
|
| 154 |
+
"temperature": 1.0,
|
| 155 |
+
"top_k": 50,
|
| 156 |
+
"top_p": 1.0,
|
| 157 |
+
"typical_p": 1.0,
|
| 158 |
+
"repetition_penalty": 1.0,
|
| 159 |
+
"length_penalty": 1.0,
|
| 160 |
+
"no_repeat_ngram_size": 0,
|
| 161 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 162 |
+
"bad_words_ids": null,
|
| 163 |
+
"num_return_sequences": 1,
|
| 164 |
+
"output_scores": false,
|
| 165 |
+
"return_dict_in_generate": false,
|
| 166 |
+
"forced_bos_token_id": null,
|
| 167 |
+
"forced_eos_token_id": null,
|
| 168 |
+
"remove_invalid_values": false,
|
| 169 |
+
"exponential_decay_length_penalty": null,
|
| 170 |
+
"suppress_tokens": null,
|
| 171 |
+
"begin_suppress_tokens": null,
|
| 172 |
+
"_name_or_path": "LiquidAI/LFM2-1.2B",
|
| 173 |
+
"block_dim": 2048,
|
| 174 |
+
"block_ff_dim": 12288,
|
| 175 |
+
"block_mlp_init_scale": 1.0,
|
| 176 |
+
"block_norm_eps": 1e-05,
|
| 177 |
+
"block_out_init_scale": 1.0,
|
| 178 |
+
"block_use_swiglu": true,
|
| 179 |
+
"block_use_xavier_init": true,
|
| 180 |
+
"conv_dim": 2048,
|
| 181 |
+
"conv_dim_out": 2048,
|
| 182 |
+
"conv_use_xavier_init": true,
|
| 183 |
+
"model_type": "lfm2",
|
| 184 |
+
"num_heads": 32,
|
| 185 |
+
"use_pos_enc": true,
|
| 186 |
+
"tf_legacy_loss": false,
|
| 187 |
+
"use_bfloat16": false,
|
| 188 |
+
"output_attentions": false
|
| 189 |
+
},
|
| 190 |
+
"tf_legacy_loss": false,
|
| 191 |
+
"tie_encoder_decoder": false,
|
| 192 |
+
"tie_word_embeddings": true,
|
| 193 |
+
"tile_size": 512,
|
| 194 |
+
"tokenizer_class": null,
|
| 195 |
+
"top_k": 50,
|
| 196 |
+
"top_p": 1.0,
|
| 197 |
+
"torchscript": false,
|
| 198 |
+
"transformers_version": "4.55.0",
|
| 199 |
+
"typical_p": 1.0,
|
| 200 |
+
"use_bfloat16": false,
|
| 201 |
+
"use_image_special_tokens": true,
|
| 202 |
+
"use_thumbnail": true,
|
| 203 |
+
"vision_config": {
|
| 204 |
+
"return_dict": true,
|
| 205 |
+
"output_hidden_states": false,
|
| 206 |
+
"torchscript": false,
|
| 207 |
+
"torch_dtype": "bfloat16",
|
| 208 |
+
"pruned_heads": {},
|
| 209 |
+
"tie_word_embeddings": true,
|
| 210 |
+
"chunk_size_feed_forward": 0,
|
| 211 |
+
"is_encoder_decoder": false,
|
| 212 |
+
"is_decoder": false,
|
| 213 |
+
"cross_attention_hidden_size": null,
|
| 214 |
+
"add_cross_attention": false,
|
| 215 |
+
"tie_encoder_decoder": false,
|
| 216 |
+
"architectures": null,
|
| 217 |
+
"finetuning_task": null,
|
| 218 |
+
"id2label": {
|
| 219 |
+
"0": "LABEL_0",
|
| 220 |
+
"1": "LABEL_1"
|
| 221 |
+
},
|
| 222 |
+
"label2id": {
|
| 223 |
+
"LABEL_0": 0,
|
| 224 |
+
"LABEL_1": 1
|
| 225 |
+
},
|
| 226 |
+
"task_specific_params": null,
|
| 227 |
+
"problem_type": null,
|
| 228 |
+
"tokenizer_class": null,
|
| 229 |
+
"prefix": null,
|
| 230 |
+
"bos_token_id": null,
|
| 231 |
+
"pad_token_id": null,
|
| 232 |
+
"eos_token_id": null,
|
| 233 |
+
"sep_token_id": null,
|
| 234 |
+
"decoder_start_token_id": null,
|
| 235 |
+
"max_length": 20,
|
| 236 |
+
"min_length": 0,
|
| 237 |
+
"do_sample": false,
|
| 238 |
+
"early_stopping": false,
|
| 239 |
+
"num_beams": 1,
|
| 240 |
+
"num_beam_groups": 1,
|
| 241 |
+
"diversity_penalty": 0.0,
|
| 242 |
+
"temperature": 1.0,
|
| 243 |
+
"top_k": 50,
|
| 244 |
+
"top_p": 1.0,
|
| 245 |
+
"typical_p": 1.0,
|
| 246 |
+
"repetition_penalty": 1.0,
|
| 247 |
+
"length_penalty": 1.0,
|
| 248 |
+
"no_repeat_ngram_size": 0,
|
| 249 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 250 |
+
"bad_words_ids": null,
|
| 251 |
+
"num_return_sequences": 1,
|
| 252 |
+
"output_scores": false,
|
| 253 |
+
"return_dict_in_generate": false,
|
| 254 |
+
"forced_bos_token_id": null,
|
| 255 |
+
"forced_eos_token_id": null,
|
| 256 |
+
"remove_invalid_values": false,
|
| 257 |
+
"exponential_decay_length_penalty": null,
|
| 258 |
+
"suppress_tokens": null,
|
| 259 |
+
"begin_suppress_tokens": null,
|
| 260 |
+
"_name_or_path": "",
|
| 261 |
+
"model_type": "siglip2_vision_model",
|
| 262 |
+
"vision_use_head": false,
|
| 263 |
+
"tf_legacy_loss": false,
|
| 264 |
+
"use_bfloat16": false,
|
| 265 |
+
"hidden_size": 1152,
|
| 266 |
+
"intermediate_size": 4304,
|
| 267 |
+
"num_hidden_layers": 27,
|
| 268 |
+
"num_attention_heads": 16,
|
| 269 |
+
"num_channels": 3,
|
| 270 |
+
"patch_size": 16,
|
| 271 |
+
"attention_dropout": 0.0,
|
| 272 |
+
"layer_norm_eps": 1e-06,
|
| 273 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 274 |
+
"num_patches": 256,
|
| 275 |
+
"output_attentions": false
|
| 276 |
+
},
|
| 277 |
+
"vision_feature_layer": -2
|
| 278 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 7,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.55.0"
|
| 7 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06605b68fb58bde7772d4c22285ac93bf6ef2c5f8f1017c3b1049f0f3b37f522
|
| 3 |
+
size 2056656915
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 2056560960
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.model.embed_tokens.biases": "model.safetensors",
|
| 7 |
+
"language_model.model.embed_tokens.scales": "model.safetensors",
|
| 8 |
+
"language_model.model.embed_tokens.weight": "model.safetensors",
|
| 9 |
+
"language_model.model.embedding_norm.weight": "model.safetensors",
|
| 10 |
+
"language_model.model.layers.0.conv.conv.weight": "model.safetensors",
|
| 11 |
+
"language_model.model.layers.0.conv.in_proj.biases": "model.safetensors",
|
| 12 |
+
"language_model.model.layers.0.conv.in_proj.scales": "model.safetensors",
|
| 13 |
+
"language_model.model.layers.0.conv.in_proj.weight": "model.safetensors",
|
| 14 |
+
"language_model.model.layers.0.conv.out_proj.biases": "model.safetensors",
|
| 15 |
+
"language_model.model.layers.0.conv.out_proj.scales": "model.safetensors",
|
| 16 |
+
"language_model.model.layers.0.conv.out_proj.weight": "model.safetensors",
|
| 17 |
+
"language_model.model.layers.0.feed_forward.w1.biases": "model.safetensors",
|
| 18 |
+
"language_model.model.layers.0.feed_forward.w1.scales": "model.safetensors",
|
| 19 |
+
"language_model.model.layers.0.feed_forward.w1.weight": "model.safetensors",
|
| 20 |
+
"language_model.model.layers.0.feed_forward.w2.biases": "model.safetensors",
|
| 21 |
+
"language_model.model.layers.0.feed_forward.w2.scales": "model.safetensors",
|
| 22 |
+
"language_model.model.layers.0.feed_forward.w2.weight": "model.safetensors",
|
| 23 |
+
"language_model.model.layers.0.feed_forward.w3.biases": "model.safetensors",
|
| 24 |
+
"language_model.model.layers.0.feed_forward.w3.scales": "model.safetensors",
|
| 25 |
+
"language_model.model.layers.0.feed_forward.w3.weight": "model.safetensors",
|
| 26 |
+
"language_model.model.layers.0.ffn_norm.weight": "model.safetensors",
|
| 27 |
+
"language_model.model.layers.0.operator_norm.weight": "model.safetensors",
|
| 28 |
+
"language_model.model.layers.1.conv.conv.weight": "model.safetensors",
|
| 29 |
+
"language_model.model.layers.1.conv.in_proj.biases": "model.safetensors",
|
| 30 |
+
"language_model.model.layers.1.conv.in_proj.scales": "model.safetensors",
|
| 31 |
+
"language_model.model.layers.1.conv.in_proj.weight": "model.safetensors",
|
| 32 |
+
"language_model.model.layers.1.conv.out_proj.biases": "model.safetensors",
|
| 33 |
+
"language_model.model.layers.1.conv.out_proj.scales": "model.safetensors",
|
| 34 |
+
"language_model.model.layers.1.conv.out_proj.weight": "model.safetensors",
|
| 35 |
+
"language_model.model.layers.1.feed_forward.w1.biases": "model.safetensors",
|
| 36 |
+
"language_model.model.layers.1.feed_forward.w1.scales": "model.safetensors",
|
| 37 |
+
"language_model.model.layers.1.feed_forward.w1.weight": "model.safetensors",
|
| 38 |
+
"language_model.model.layers.1.feed_forward.w2.biases": "model.safetensors",
|
| 39 |
+
"language_model.model.layers.1.feed_forward.w2.scales": "model.safetensors",
|
| 40 |
+
"language_model.model.layers.1.feed_forward.w2.weight": "model.safetensors",
|
| 41 |
+
"language_model.model.layers.1.feed_forward.w3.biases": "model.safetensors",
|
| 42 |
+
"language_model.model.layers.1.feed_forward.w3.scales": "model.safetensors",
|
| 43 |
+
"language_model.model.layers.1.feed_forward.w3.weight": "model.safetensors",
|
| 44 |
+
"language_model.model.layers.1.ffn_norm.weight": "model.safetensors",
|
| 45 |
+
"language_model.model.layers.1.operator_norm.weight": "model.safetensors",
|
| 46 |
+
"language_model.model.layers.10.feed_forward.w1.biases": "model.safetensors",
|
| 47 |
+
"language_model.model.layers.10.feed_forward.w1.scales": "model.safetensors",
|
| 48 |
+
"language_model.model.layers.10.feed_forward.w1.weight": "model.safetensors",
|
| 49 |
+
"language_model.model.layers.10.feed_forward.w2.biases": "model.safetensors",
|
| 50 |
+
"language_model.model.layers.10.feed_forward.w2.scales": "model.safetensors",
|
| 51 |
+
"language_model.model.layers.10.feed_forward.w2.weight": "model.safetensors",
|
| 52 |
+
"language_model.model.layers.10.feed_forward.w3.biases": "model.safetensors",
|
| 53 |
+
"language_model.model.layers.10.feed_forward.w3.scales": "model.safetensors",
|
| 54 |
+
"language_model.model.layers.10.feed_forward.w3.weight": "model.safetensors",
|
| 55 |
+
"language_model.model.layers.10.ffn_norm.weight": "model.safetensors",
|
| 56 |
+
"language_model.model.layers.10.operator_norm.weight": "model.safetensors",
|
| 57 |
+
"language_model.model.layers.10.self_attn.k_layernorm.weight": "model.safetensors",
|
| 58 |
+
"language_model.model.layers.10.self_attn.k_proj.biases": "model.safetensors",
|
| 59 |
+
"language_model.model.layers.10.self_attn.k_proj.scales": "model.safetensors",
|
| 60 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model.safetensors",
|
| 61 |
+
"language_model.model.layers.10.self_attn.out_proj.biases": "model.safetensors",
|
| 62 |
+
"language_model.model.layers.10.self_attn.out_proj.scales": "model.safetensors",
|
| 63 |
+
"language_model.model.layers.10.self_attn.out_proj.weight": "model.safetensors",
|
| 64 |
+
"language_model.model.layers.10.self_attn.q_layernorm.weight": "model.safetensors",
|
| 65 |
+
"language_model.model.layers.10.self_attn.q_proj.biases": "model.safetensors",
|
| 66 |
+
"language_model.model.layers.10.self_attn.q_proj.scales": "model.safetensors",
|
| 67 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model.safetensors",
|
| 68 |
+
"language_model.model.layers.10.self_attn.v_proj.biases": "model.safetensors",
|
| 69 |
+
"language_model.model.layers.10.self_attn.v_proj.scales": "model.safetensors",
|
| 70 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model.safetensors",
|
| 71 |
+
"language_model.model.layers.11.conv.conv.weight": "model.safetensors",
|
| 72 |
+
"language_model.model.layers.11.conv.in_proj.biases": "model.safetensors",
|
| 73 |
+
"language_model.model.layers.11.conv.in_proj.scales": "model.safetensors",
|
| 74 |
+
"language_model.model.layers.11.conv.in_proj.weight": "model.safetensors",
|
| 75 |
+
"language_model.model.layers.11.conv.out_proj.biases": "model.safetensors",
|
| 76 |
+
"language_model.model.layers.11.conv.out_proj.scales": "model.safetensors",
|
| 77 |
+
"language_model.model.layers.11.conv.out_proj.weight": "model.safetensors",
|
| 78 |
+
"language_model.model.layers.11.feed_forward.w1.biases": "model.safetensors",
|
| 79 |
+
"language_model.model.layers.11.feed_forward.w1.scales": "model.safetensors",
|
| 80 |
+
"language_model.model.layers.11.feed_forward.w1.weight": "model.safetensors",
|
| 81 |
+
"language_model.model.layers.11.feed_forward.w2.biases": "model.safetensors",
|
| 82 |
+
"language_model.model.layers.11.feed_forward.w2.scales": "model.safetensors",
|
| 83 |
+
"language_model.model.layers.11.feed_forward.w2.weight": "model.safetensors",
|
| 84 |
+
"language_model.model.layers.11.feed_forward.w3.biases": "model.safetensors",
|
| 85 |
+
"language_model.model.layers.11.feed_forward.w3.scales": "model.safetensors",
|
| 86 |
+
"language_model.model.layers.11.feed_forward.w3.weight": "model.safetensors",
|
| 87 |
+
"language_model.model.layers.11.ffn_norm.weight": "model.safetensors",
|
| 88 |
+
"language_model.model.layers.11.operator_norm.weight": "model.safetensors",
|
| 89 |
+
"language_model.model.layers.12.feed_forward.w1.biases": "model.safetensors",
|
| 90 |
+
"language_model.model.layers.12.feed_forward.w1.scales": "model.safetensors",
|
| 91 |
+
"language_model.model.layers.12.feed_forward.w1.weight": "model.safetensors",
|
| 92 |
+
"language_model.model.layers.12.feed_forward.w2.biases": "model.safetensors",
|
| 93 |
+
"language_model.model.layers.12.feed_forward.w2.scales": "model.safetensors",
|
| 94 |
+
"language_model.model.layers.12.feed_forward.w2.weight": "model.safetensors",
|
| 95 |
+
"language_model.model.layers.12.feed_forward.w3.biases": "model.safetensors",
|
| 96 |
+
"language_model.model.layers.12.feed_forward.w3.scales": "model.safetensors",
|
| 97 |
+
"language_model.model.layers.12.feed_forward.w3.weight": "model.safetensors",
|
| 98 |
+
"language_model.model.layers.12.ffn_norm.weight": "model.safetensors",
|
| 99 |
+
"language_model.model.layers.12.operator_norm.weight": "model.safetensors",
|
| 100 |
+
"language_model.model.layers.12.self_attn.k_layernorm.weight": "model.safetensors",
|
| 101 |
+
"language_model.model.layers.12.self_attn.k_proj.biases": "model.safetensors",
|
| 102 |
+
"language_model.model.layers.12.self_attn.k_proj.scales": "model.safetensors",
|
| 103 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model.safetensors",
|
| 104 |
+
"language_model.model.layers.12.self_attn.out_proj.biases": "model.safetensors",
|
| 105 |
+
"language_model.model.layers.12.self_attn.out_proj.scales": "model.safetensors",
|
| 106 |
+
"language_model.model.layers.12.self_attn.out_proj.weight": "model.safetensors",
|
| 107 |
+
"language_model.model.layers.12.self_attn.q_layernorm.weight": "model.safetensors",
|
| 108 |
+
"language_model.model.layers.12.self_attn.q_proj.biases": "model.safetensors",
|
| 109 |
+
"language_model.model.layers.12.self_attn.q_proj.scales": "model.safetensors",
|
| 110 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model.safetensors",
|
| 111 |
+
"language_model.model.layers.12.self_attn.v_proj.biases": "model.safetensors",
|
| 112 |
+
"language_model.model.layers.12.self_attn.v_proj.scales": "model.safetensors",
|
| 113 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model.safetensors",
|
| 114 |
+
"language_model.model.layers.13.conv.conv.weight": "model.safetensors",
|
| 115 |
+
"language_model.model.layers.13.conv.in_proj.biases": "model.safetensors",
|
| 116 |
+
"language_model.model.layers.13.conv.in_proj.scales": "model.safetensors",
|
| 117 |
+
"language_model.model.layers.13.conv.in_proj.weight": "model.safetensors",
|
| 118 |
+
"language_model.model.layers.13.conv.out_proj.biases": "model.safetensors",
|
| 119 |
+
"language_model.model.layers.13.conv.out_proj.scales": "model.safetensors",
|
| 120 |
+
"language_model.model.layers.13.conv.out_proj.weight": "model.safetensors",
|
| 121 |
+
"language_model.model.layers.13.feed_forward.w1.biases": "model.safetensors",
|
| 122 |
+
"language_model.model.layers.13.feed_forward.w1.scales": "model.safetensors",
|
| 123 |
+
"language_model.model.layers.13.feed_forward.w1.weight": "model.safetensors",
|
| 124 |
+
"language_model.model.layers.13.feed_forward.w2.biases": "model.safetensors",
|
| 125 |
+
"language_model.model.layers.13.feed_forward.w2.scales": "model.safetensors",
|
| 126 |
+
"language_model.model.layers.13.feed_forward.w2.weight": "model.safetensors",
|
| 127 |
+
"language_model.model.layers.13.feed_forward.w3.biases": "model.safetensors",
|
| 128 |
+
"language_model.model.layers.13.feed_forward.w3.scales": "model.safetensors",
|
| 129 |
+
"language_model.model.layers.13.feed_forward.w3.weight": "model.safetensors",
|
| 130 |
+
"language_model.model.layers.13.ffn_norm.weight": "model.safetensors",
|
| 131 |
+
"language_model.model.layers.13.operator_norm.weight": "model.safetensors",
|
| 132 |
+
"language_model.model.layers.14.feed_forward.w1.biases": "model.safetensors",
|
| 133 |
+
"language_model.model.layers.14.feed_forward.w1.scales": "model.safetensors",
|
| 134 |
+
"language_model.model.layers.14.feed_forward.w1.weight": "model.safetensors",
|
| 135 |
+
"language_model.model.layers.14.feed_forward.w2.biases": "model.safetensors",
|
| 136 |
+
"language_model.model.layers.14.feed_forward.w2.scales": "model.safetensors",
|
| 137 |
+
"language_model.model.layers.14.feed_forward.w2.weight": "model.safetensors",
|
| 138 |
+
"language_model.model.layers.14.feed_forward.w3.biases": "model.safetensors",
|
| 139 |
+
"language_model.model.layers.14.feed_forward.w3.scales": "model.safetensors",
|
| 140 |
+
"language_model.model.layers.14.feed_forward.w3.weight": "model.safetensors",
|
| 141 |
+
"language_model.model.layers.14.ffn_norm.weight": "model.safetensors",
|
| 142 |
+
"language_model.model.layers.14.operator_norm.weight": "model.safetensors",
|
| 143 |
+
"language_model.model.layers.14.self_attn.k_layernorm.weight": "model.safetensors",
|
| 144 |
+
"language_model.model.layers.14.self_attn.k_proj.biases": "model.safetensors",
|
| 145 |
+
"language_model.model.layers.14.self_attn.k_proj.scales": "model.safetensors",
|
| 146 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model.safetensors",
|
| 147 |
+
"language_model.model.layers.14.self_attn.out_proj.biases": "model.safetensors",
|
| 148 |
+
"language_model.model.layers.14.self_attn.out_proj.scales": "model.safetensors",
|
| 149 |
+
"language_model.model.layers.14.self_attn.out_proj.weight": "model.safetensors",
|
| 150 |
+
"language_model.model.layers.14.self_attn.q_layernorm.weight": "model.safetensors",
|
| 151 |
+
"language_model.model.layers.14.self_attn.q_proj.biases": "model.safetensors",
|
| 152 |
+
"language_model.model.layers.14.self_attn.q_proj.scales": "model.safetensors",
|
| 153 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model.safetensors",
|
| 154 |
+
"language_model.model.layers.14.self_attn.v_proj.biases": "model.safetensors",
|
| 155 |
+
"language_model.model.layers.14.self_attn.v_proj.scales": "model.safetensors",
|
| 156 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model.safetensors",
|
| 157 |
+
"language_model.model.layers.15.conv.conv.weight": "model.safetensors",
|
| 158 |
+
"language_model.model.layers.15.conv.in_proj.biases": "model.safetensors",
|
| 159 |
+
"language_model.model.layers.15.conv.in_proj.scales": "model.safetensors",
|
| 160 |
+
"language_model.model.layers.15.conv.in_proj.weight": "model.safetensors",
|
| 161 |
+
"language_model.model.layers.15.conv.out_proj.biases": "model.safetensors",
|
| 162 |
+
"language_model.model.layers.15.conv.out_proj.scales": "model.safetensors",
|
| 163 |
+
"language_model.model.layers.15.conv.out_proj.weight": "model.safetensors",
|
| 164 |
+
"language_model.model.layers.15.feed_forward.w1.biases": "model.safetensors",
|
| 165 |
+
"language_model.model.layers.15.feed_forward.w1.scales": "model.safetensors",
|
| 166 |
+
"language_model.model.layers.15.feed_forward.w1.weight": "model.safetensors",
|
| 167 |
+
"language_model.model.layers.15.feed_forward.w2.biases": "model.safetensors",
|
| 168 |
+
"language_model.model.layers.15.feed_forward.w2.scales": "model.safetensors",
|
| 169 |
+
"language_model.model.layers.15.feed_forward.w2.weight": "model.safetensors",
|
| 170 |
+
"language_model.model.layers.15.feed_forward.w3.biases": "model.safetensors",
|
| 171 |
+
"language_model.model.layers.15.feed_forward.w3.scales": "model.safetensors",
|
| 172 |
+
"language_model.model.layers.15.feed_forward.w3.weight": "model.safetensors",
|
| 173 |
+
"language_model.model.layers.15.ffn_norm.weight": "model.safetensors",
|
| 174 |
+
"language_model.model.layers.15.operator_norm.weight": "model.safetensors",
|
| 175 |
+
"language_model.model.layers.2.feed_forward.w1.biases": "model.safetensors",
|
| 176 |
+
"language_model.model.layers.2.feed_forward.w1.scales": "model.safetensors",
|
| 177 |
+
"language_model.model.layers.2.feed_forward.w1.weight": "model.safetensors",
|
| 178 |
+
"language_model.model.layers.2.feed_forward.w2.biases": "model.safetensors",
|
| 179 |
+
"language_model.model.layers.2.feed_forward.w2.scales": "model.safetensors",
|
| 180 |
+
"language_model.model.layers.2.feed_forward.w2.weight": "model.safetensors",
|
| 181 |
+
"language_model.model.layers.2.feed_forward.w3.biases": "model.safetensors",
|
| 182 |
+
"language_model.model.layers.2.feed_forward.w3.scales": "model.safetensors",
|
| 183 |
+
"language_model.model.layers.2.feed_forward.w3.weight": "model.safetensors",
|
| 184 |
+
"language_model.model.layers.2.ffn_norm.weight": "model.safetensors",
|
| 185 |
+
"language_model.model.layers.2.operator_norm.weight": "model.safetensors",
|
| 186 |
+
"language_model.model.layers.2.self_attn.k_layernorm.weight": "model.safetensors",
|
| 187 |
+
"language_model.model.layers.2.self_attn.k_proj.biases": "model.safetensors",
|
| 188 |
+
"language_model.model.layers.2.self_attn.k_proj.scales": "model.safetensors",
|
| 189 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model.safetensors",
|
| 190 |
+
"language_model.model.layers.2.self_attn.out_proj.biases": "model.safetensors",
|
| 191 |
+
"language_model.model.layers.2.self_attn.out_proj.scales": "model.safetensors",
|
| 192 |
+
"language_model.model.layers.2.self_attn.out_proj.weight": "model.safetensors",
|
| 193 |
+
"language_model.model.layers.2.self_attn.q_layernorm.weight": "model.safetensors",
|
| 194 |
+
"language_model.model.layers.2.self_attn.q_proj.biases": "model.safetensors",
|
| 195 |
+
"language_model.model.layers.2.self_attn.q_proj.scales": "model.safetensors",
|
| 196 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model.safetensors",
|
| 197 |
+
"language_model.model.layers.2.self_attn.v_proj.biases": "model.safetensors",
|
| 198 |
+
"language_model.model.layers.2.self_attn.v_proj.scales": "model.safetensors",
|
| 199 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model.safetensors",
|
| 200 |
+
"language_model.model.layers.3.conv.conv.weight": "model.safetensors",
|
| 201 |
+
"language_model.model.layers.3.conv.in_proj.biases": "model.safetensors",
|
| 202 |
+
"language_model.model.layers.3.conv.in_proj.scales": "model.safetensors",
|
| 203 |
+
"language_model.model.layers.3.conv.in_proj.weight": "model.safetensors",
|
| 204 |
+
"language_model.model.layers.3.conv.out_proj.biases": "model.safetensors",
|
| 205 |
+
"language_model.model.layers.3.conv.out_proj.scales": "model.safetensors",
|
| 206 |
+
"language_model.model.layers.3.conv.out_proj.weight": "model.safetensors",
|
| 207 |
+
"language_model.model.layers.3.feed_forward.w1.biases": "model.safetensors",
|
| 208 |
+
"language_model.model.layers.3.feed_forward.w1.scales": "model.safetensors",
|
| 209 |
+
"language_model.model.layers.3.feed_forward.w1.weight": "model.safetensors",
|
| 210 |
+
"language_model.model.layers.3.feed_forward.w2.biases": "model.safetensors",
|
| 211 |
+
"language_model.model.layers.3.feed_forward.w2.scales": "model.safetensors",
|
| 212 |
+
"language_model.model.layers.3.feed_forward.w2.weight": "model.safetensors",
|
| 213 |
+
"language_model.model.layers.3.feed_forward.w3.biases": "model.safetensors",
|
| 214 |
+
"language_model.model.layers.3.feed_forward.w3.scales": "model.safetensors",
|
| 215 |
+
"language_model.model.layers.3.feed_forward.w3.weight": "model.safetensors",
|
| 216 |
+
"language_model.model.layers.3.ffn_norm.weight": "model.safetensors",
|
| 217 |
+
"language_model.model.layers.3.operator_norm.weight": "model.safetensors",
|
| 218 |
+
"language_model.model.layers.4.conv.conv.weight": "model.safetensors",
|
| 219 |
+
"language_model.model.layers.4.conv.in_proj.biases": "model.safetensors",
|
| 220 |
+
"language_model.model.layers.4.conv.in_proj.scales": "model.safetensors",
|
| 221 |
+
"language_model.model.layers.4.conv.in_proj.weight": "model.safetensors",
|
| 222 |
+
"language_model.model.layers.4.conv.out_proj.biases": "model.safetensors",
|
| 223 |
+
"language_model.model.layers.4.conv.out_proj.scales": "model.safetensors",
|
| 224 |
+
"language_model.model.layers.4.conv.out_proj.weight": "model.safetensors",
|
| 225 |
+
"language_model.model.layers.4.feed_forward.w1.biases": "model.safetensors",
|
| 226 |
+
"language_model.model.layers.4.feed_forward.w1.scales": "model.safetensors",
|
| 227 |
+
"language_model.model.layers.4.feed_forward.w1.weight": "model.safetensors",
|
| 228 |
+
"language_model.model.layers.4.feed_forward.w2.biases": "model.safetensors",
|
| 229 |
+
"language_model.model.layers.4.feed_forward.w2.scales": "model.safetensors",
|
| 230 |
+
"language_model.model.layers.4.feed_forward.w2.weight": "model.safetensors",
|
| 231 |
+
"language_model.model.layers.4.feed_forward.w3.biases": "model.safetensors",
|
| 232 |
+
"language_model.model.layers.4.feed_forward.w3.scales": "model.safetensors",
|
| 233 |
+
"language_model.model.layers.4.feed_forward.w3.weight": "model.safetensors",
|
| 234 |
+
"language_model.model.layers.4.ffn_norm.weight": "model.safetensors",
|
| 235 |
+
"language_model.model.layers.4.operator_norm.weight": "model.safetensors",
|
| 236 |
+
"language_model.model.layers.5.feed_forward.w1.biases": "model.safetensors",
|
| 237 |
+
"language_model.model.layers.5.feed_forward.w1.scales": "model.safetensors",
|
| 238 |
+
"language_model.model.layers.5.feed_forward.w1.weight": "model.safetensors",
|
| 239 |
+
"language_model.model.layers.5.feed_forward.w2.biases": "model.safetensors",
|
| 240 |
+
"language_model.model.layers.5.feed_forward.w2.scales": "model.safetensors",
|
| 241 |
+
"language_model.model.layers.5.feed_forward.w2.weight": "model.safetensors",
|
| 242 |
+
"language_model.model.layers.5.feed_forward.w3.biases": "model.safetensors",
|
| 243 |
+
"language_model.model.layers.5.feed_forward.w3.scales": "model.safetensors",
|
| 244 |
+
"language_model.model.layers.5.feed_forward.w3.weight": "model.safetensors",
|
| 245 |
+
"language_model.model.layers.5.ffn_norm.weight": "model.safetensors",
|
| 246 |
+
"language_model.model.layers.5.operator_norm.weight": "model.safetensors",
|
| 247 |
+
"language_model.model.layers.5.self_attn.k_layernorm.weight": "model.safetensors",
|
| 248 |
+
"language_model.model.layers.5.self_attn.k_proj.biases": "model.safetensors",
|
| 249 |
+
"language_model.model.layers.5.self_attn.k_proj.scales": "model.safetensors",
|
| 250 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model.safetensors",
|
| 251 |
+
"language_model.model.layers.5.self_attn.out_proj.biases": "model.safetensors",
|
| 252 |
+
"language_model.model.layers.5.self_attn.out_proj.scales": "model.safetensors",
|
| 253 |
+
"language_model.model.layers.5.self_attn.out_proj.weight": "model.safetensors",
|
| 254 |
+
"language_model.model.layers.5.self_attn.q_layernorm.weight": "model.safetensors",
|
| 255 |
+
"language_model.model.layers.5.self_attn.q_proj.biases": "model.safetensors",
|
| 256 |
+
"language_model.model.layers.5.self_attn.q_proj.scales": "model.safetensors",
|
| 257 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model.safetensors",
|
| 258 |
+
"language_model.model.layers.5.self_attn.v_proj.biases": "model.safetensors",
|
| 259 |
+
"language_model.model.layers.5.self_attn.v_proj.scales": "model.safetensors",
|
| 260 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model.safetensors",
|
| 261 |
+
"language_model.model.layers.6.conv.conv.weight": "model.safetensors",
|
| 262 |
+
"language_model.model.layers.6.conv.in_proj.biases": "model.safetensors",
|
| 263 |
+
"language_model.model.layers.6.conv.in_proj.scales": "model.safetensors",
|
| 264 |
+
"language_model.model.layers.6.conv.in_proj.weight": "model.safetensors",
|
| 265 |
+
"language_model.model.layers.6.conv.out_proj.biases": "model.safetensors",
|
| 266 |
+
"language_model.model.layers.6.conv.out_proj.scales": "model.safetensors",
|
| 267 |
+
"language_model.model.layers.6.conv.out_proj.weight": "model.safetensors",
|
| 268 |
+
"language_model.model.layers.6.feed_forward.w1.biases": "model.safetensors",
|
| 269 |
+
"language_model.model.layers.6.feed_forward.w1.scales": "model.safetensors",
|
| 270 |
+
"language_model.model.layers.6.feed_forward.w1.weight": "model.safetensors",
|
| 271 |
+
"language_model.model.layers.6.feed_forward.w2.biases": "model.safetensors",
|
| 272 |
+
"language_model.model.layers.6.feed_forward.w2.scales": "model.safetensors",
|
| 273 |
+
"language_model.model.layers.6.feed_forward.w2.weight": "model.safetensors",
|
| 274 |
+
"language_model.model.layers.6.feed_forward.w3.biases": "model.safetensors",
|
| 275 |
+
"language_model.model.layers.6.feed_forward.w3.scales": "model.safetensors",
|
| 276 |
+
"language_model.model.layers.6.feed_forward.w3.weight": "model.safetensors",
|
| 277 |
+
"language_model.model.layers.6.ffn_norm.weight": "model.safetensors",
|
| 278 |
+
"language_model.model.layers.6.operator_norm.weight": "model.safetensors",
|
| 279 |
+
"language_model.model.layers.7.conv.conv.weight": "model.safetensors",
|
| 280 |
+
"language_model.model.layers.7.conv.in_proj.biases": "model.safetensors",
|
| 281 |
+
"language_model.model.layers.7.conv.in_proj.scales": "model.safetensors",
|
| 282 |
+
"language_model.model.layers.7.conv.in_proj.weight": "model.safetensors",
|
| 283 |
+
"language_model.model.layers.7.conv.out_proj.biases": "model.safetensors",
|
| 284 |
+
"language_model.model.layers.7.conv.out_proj.scales": "model.safetensors",
|
| 285 |
+
"language_model.model.layers.7.conv.out_proj.weight": "model.safetensors",
|
| 286 |
+
"language_model.model.layers.7.feed_forward.w1.biases": "model.safetensors",
|
| 287 |
+
"language_model.model.layers.7.feed_forward.w1.scales": "model.safetensors",
|
| 288 |
+
"language_model.model.layers.7.feed_forward.w1.weight": "model.safetensors",
|
| 289 |
+
"language_model.model.layers.7.feed_forward.w2.biases": "model.safetensors",
|
| 290 |
+
"language_model.model.layers.7.feed_forward.w2.scales": "model.safetensors",
|
| 291 |
+
"language_model.model.layers.7.feed_forward.w2.weight": "model.safetensors",
|
| 292 |
+
"language_model.model.layers.7.feed_forward.w3.biases": "model.safetensors",
|
| 293 |
+
"language_model.model.layers.7.feed_forward.w3.scales": "model.safetensors",
|
| 294 |
+
"language_model.model.layers.7.feed_forward.w3.weight": "model.safetensors",
|
| 295 |
+
"language_model.model.layers.7.ffn_norm.weight": "model.safetensors",
|
| 296 |
+
"language_model.model.layers.7.operator_norm.weight": "model.safetensors",
|
| 297 |
+
"language_model.model.layers.8.feed_forward.w1.biases": "model.safetensors",
|
| 298 |
+
"language_model.model.layers.8.feed_forward.w1.scales": "model.safetensors",
|
| 299 |
+
"language_model.model.layers.8.feed_forward.w1.weight": "model.safetensors",
|
| 300 |
+
"language_model.model.layers.8.feed_forward.w2.biases": "model.safetensors",
|
| 301 |
+
"language_model.model.layers.8.feed_forward.w2.scales": "model.safetensors",
|
| 302 |
+
"language_model.model.layers.8.feed_forward.w2.weight": "model.safetensors",
|
| 303 |
+
"language_model.model.layers.8.feed_forward.w3.biases": "model.safetensors",
|
| 304 |
+
"language_model.model.layers.8.feed_forward.w3.scales": "model.safetensors",
|
| 305 |
+
"language_model.model.layers.8.feed_forward.w3.weight": "model.safetensors",
|
| 306 |
+
"language_model.model.layers.8.ffn_norm.weight": "model.safetensors",
|
| 307 |
+
"language_model.model.layers.8.operator_norm.weight": "model.safetensors",
|
| 308 |
+
"language_model.model.layers.8.self_attn.k_layernorm.weight": "model.safetensors",
|
| 309 |
+
"language_model.model.layers.8.self_attn.k_proj.biases": "model.safetensors",
|
| 310 |
+
"language_model.model.layers.8.self_attn.k_proj.scales": "model.safetensors",
|
| 311 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model.safetensors",
|
| 312 |
+
"language_model.model.layers.8.self_attn.out_proj.biases": "model.safetensors",
|
| 313 |
+
"language_model.model.layers.8.self_attn.out_proj.scales": "model.safetensors",
|
| 314 |
+
"language_model.model.layers.8.self_attn.out_proj.weight": "model.safetensors",
|
| 315 |
+
"language_model.model.layers.8.self_attn.q_layernorm.weight": "model.safetensors",
|
| 316 |
+
"language_model.model.layers.8.self_attn.q_proj.biases": "model.safetensors",
|
| 317 |
+
"language_model.model.layers.8.self_attn.q_proj.scales": "model.safetensors",
|
| 318 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model.safetensors",
|
| 319 |
+
"language_model.model.layers.8.self_attn.v_proj.biases": "model.safetensors",
|
| 320 |
+
"language_model.model.layers.8.self_attn.v_proj.scales": "model.safetensors",
|
| 321 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model.safetensors",
|
| 322 |
+
"language_model.model.layers.9.conv.conv.weight": "model.safetensors",
|
| 323 |
+
"language_model.model.layers.9.conv.in_proj.biases": "model.safetensors",
|
| 324 |
+
"language_model.model.layers.9.conv.in_proj.scales": "model.safetensors",
|
| 325 |
+
"language_model.model.layers.9.conv.in_proj.weight": "model.safetensors",
|
| 326 |
+
"language_model.model.layers.9.conv.out_proj.biases": "model.safetensors",
|
| 327 |
+
"language_model.model.layers.9.conv.out_proj.scales": "model.safetensors",
|
| 328 |
+
"language_model.model.layers.9.conv.out_proj.weight": "model.safetensors",
|
| 329 |
+
"language_model.model.layers.9.feed_forward.w1.biases": "model.safetensors",
|
| 330 |
+
"language_model.model.layers.9.feed_forward.w1.scales": "model.safetensors",
|
| 331 |
+
"language_model.model.layers.9.feed_forward.w1.weight": "model.safetensors",
|
| 332 |
+
"language_model.model.layers.9.feed_forward.w2.biases": "model.safetensors",
|
| 333 |
+
"language_model.model.layers.9.feed_forward.w2.scales": "model.safetensors",
|
| 334 |
+
"language_model.model.layers.9.feed_forward.w2.weight": "model.safetensors",
|
| 335 |
+
"language_model.model.layers.9.feed_forward.w3.biases": "model.safetensors",
|
| 336 |
+
"language_model.model.layers.9.feed_forward.w3.scales": "model.safetensors",
|
| 337 |
+
"language_model.model.layers.9.feed_forward.w3.weight": "model.safetensors",
|
| 338 |
+
"language_model.model.layers.9.ffn_norm.weight": "model.safetensors",
|
| 339 |
+
"language_model.model.layers.9.operator_norm.weight": "model.safetensors",
|
| 340 |
+
"multi_modal_projector.layer_norm.bias": "model.safetensors",
|
| 341 |
+
"multi_modal_projector.layer_norm.weight": "model.safetensors",
|
| 342 |
+
"multi_modal_projector.linear_1.bias": "model.safetensors",
|
| 343 |
+
"multi_modal_projector.linear_1.biases": "model.safetensors",
|
| 344 |
+
"multi_modal_projector.linear_1.scales": "model.safetensors",
|
| 345 |
+
"multi_modal_projector.linear_1.weight": "model.safetensors",
|
| 346 |
+
"multi_modal_projector.linear_2.bias": "model.safetensors",
|
| 347 |
+
"multi_modal_projector.linear_2.biases": "model.safetensors",
|
| 348 |
+
"multi_modal_projector.linear_2.scales": "model.safetensors",
|
| 349 |
+
"multi_modal_projector.linear_2.weight": "model.safetensors",
|
| 350 |
+
"vision_tower.embeddings.patch_embedding.bias": "model.safetensors",
|
| 351 |
+
"vision_tower.embeddings.patch_embedding.weight": "model.safetensors",
|
| 352 |
+
"vision_tower.embeddings.position_embedding.weight": "model.safetensors",
|
| 353 |
+
"vision_tower.encoder.layers.0.layer_norm1.bias": "model.safetensors",
|
| 354 |
+
"vision_tower.encoder.layers.0.layer_norm1.weight": "model.safetensors",
|
| 355 |
+
"vision_tower.encoder.layers.0.layer_norm2.bias": "model.safetensors",
|
| 356 |
+
"vision_tower.encoder.layers.0.layer_norm2.weight": "model.safetensors",
|
| 357 |
+
"vision_tower.encoder.layers.0.mlp.fc1.bias": "model.safetensors",
|
| 358 |
+
"vision_tower.encoder.layers.0.mlp.fc1.weight": "model.safetensors",
|
| 359 |
+
"vision_tower.encoder.layers.0.mlp.fc2.bias": "model.safetensors",
|
| 360 |
+
"vision_tower.encoder.layers.0.mlp.fc2.weight": "model.safetensors",
|
| 361 |
+
"vision_tower.encoder.layers.0.self_attn.k_proj.bias": "model.safetensors",
|
| 362 |
+
"vision_tower.encoder.layers.0.self_attn.k_proj.weight": "model.safetensors",
|
| 363 |
+
"vision_tower.encoder.layers.0.self_attn.out_proj.bias": "model.safetensors",
|
| 364 |
+
"vision_tower.encoder.layers.0.self_attn.out_proj.weight": "model.safetensors",
|
| 365 |
+
"vision_tower.encoder.layers.0.self_attn.q_proj.bias": "model.safetensors",
|
| 366 |
+
"vision_tower.encoder.layers.0.self_attn.q_proj.weight": "model.safetensors",
|
| 367 |
+
"vision_tower.encoder.layers.0.self_attn.v_proj.bias": "model.safetensors",
|
| 368 |
+
"vision_tower.encoder.layers.0.self_attn.v_proj.weight": "model.safetensors",
|
| 369 |
+
"vision_tower.encoder.layers.1.layer_norm1.bias": "model.safetensors",
|
| 370 |
+
"vision_tower.encoder.layers.1.layer_norm1.weight": "model.safetensors",
|
| 371 |
+
"vision_tower.encoder.layers.1.layer_norm2.bias": "model.safetensors",
|
| 372 |
+
"vision_tower.encoder.layers.1.layer_norm2.weight": "model.safetensors",
|
| 373 |
+
"vision_tower.encoder.layers.1.mlp.fc1.bias": "model.safetensors",
|
| 374 |
+
"vision_tower.encoder.layers.1.mlp.fc1.weight": "model.safetensors",
|
| 375 |
+
"vision_tower.encoder.layers.1.mlp.fc2.bias": "model.safetensors",
|
| 376 |
+
"vision_tower.encoder.layers.1.mlp.fc2.weight": "model.safetensors",
|
| 377 |
+
"vision_tower.encoder.layers.1.self_attn.k_proj.bias": "model.safetensors",
|
| 378 |
+
"vision_tower.encoder.layers.1.self_attn.k_proj.weight": "model.safetensors",
|
| 379 |
+
"vision_tower.encoder.layers.1.self_attn.out_proj.bias": "model.safetensors",
|
| 380 |
+
"vision_tower.encoder.layers.1.self_attn.out_proj.weight": "model.safetensors",
|
| 381 |
+
"vision_tower.encoder.layers.1.self_attn.q_proj.bias": "model.safetensors",
|
| 382 |
+
"vision_tower.encoder.layers.1.self_attn.q_proj.weight": "model.safetensors",
|
| 383 |
+
"vision_tower.encoder.layers.1.self_attn.v_proj.bias": "model.safetensors",
|
| 384 |
+
"vision_tower.encoder.layers.1.self_attn.v_proj.weight": "model.safetensors",
|
| 385 |
+
"vision_tower.encoder.layers.10.layer_norm1.bias": "model.safetensors",
|
| 386 |
+
"vision_tower.encoder.layers.10.layer_norm1.weight": "model.safetensors",
|
| 387 |
+
"vision_tower.encoder.layers.10.layer_norm2.bias": "model.safetensors",
|
| 388 |
+
"vision_tower.encoder.layers.10.layer_norm2.weight": "model.safetensors",
|
| 389 |
+
"vision_tower.encoder.layers.10.mlp.fc1.bias": "model.safetensors",
|
| 390 |
+
"vision_tower.encoder.layers.10.mlp.fc1.weight": "model.safetensors",
|
| 391 |
+
"vision_tower.encoder.layers.10.mlp.fc2.bias": "model.safetensors",
|
| 392 |
+
"vision_tower.encoder.layers.10.mlp.fc2.weight": "model.safetensors",
|
| 393 |
+
"vision_tower.encoder.layers.10.self_attn.k_proj.bias": "model.safetensors",
|
| 394 |
+
"vision_tower.encoder.layers.10.self_attn.k_proj.weight": "model.safetensors",
|
| 395 |
+
"vision_tower.encoder.layers.10.self_attn.out_proj.bias": "model.safetensors",
|
| 396 |
+
"vision_tower.encoder.layers.10.self_attn.out_proj.weight": "model.safetensors",
|
| 397 |
+
"vision_tower.encoder.layers.10.self_attn.q_proj.bias": "model.safetensors",
|
| 398 |
+
"vision_tower.encoder.layers.10.self_attn.q_proj.weight": "model.safetensors",
|
| 399 |
+
"vision_tower.encoder.layers.10.self_attn.v_proj.bias": "model.safetensors",
|
| 400 |
+
"vision_tower.encoder.layers.10.self_attn.v_proj.weight": "model.safetensors",
|
| 401 |
+
"vision_tower.encoder.layers.11.layer_norm1.bias": "model.safetensors",
|
| 402 |
+
"vision_tower.encoder.layers.11.layer_norm1.weight": "model.safetensors",
|
| 403 |
+
"vision_tower.encoder.layers.11.layer_norm2.bias": "model.safetensors",
|
| 404 |
+
"vision_tower.encoder.layers.11.layer_norm2.weight": "model.safetensors",
|
| 405 |
+
"vision_tower.encoder.layers.11.mlp.fc1.bias": "model.safetensors",
|
| 406 |
+
"vision_tower.encoder.layers.11.mlp.fc1.weight": "model.safetensors",
|
| 407 |
+
"vision_tower.encoder.layers.11.mlp.fc2.bias": "model.safetensors",
|
| 408 |
+
"vision_tower.encoder.layers.11.mlp.fc2.weight": "model.safetensors",
|
| 409 |
+
"vision_tower.encoder.layers.11.self_attn.k_proj.bias": "model.safetensors",
|
| 410 |
+
"vision_tower.encoder.layers.11.self_attn.k_proj.weight": "model.safetensors",
|
| 411 |
+
"vision_tower.encoder.layers.11.self_attn.out_proj.bias": "model.safetensors",
|
| 412 |
+
"vision_tower.encoder.layers.11.self_attn.out_proj.weight": "model.safetensors",
|
| 413 |
+
"vision_tower.encoder.layers.11.self_attn.q_proj.bias": "model.safetensors",
|
| 414 |
+
"vision_tower.encoder.layers.11.self_attn.q_proj.weight": "model.safetensors",
|
| 415 |
+
"vision_tower.encoder.layers.11.self_attn.v_proj.bias": "model.safetensors",
|
| 416 |
+
"vision_tower.encoder.layers.11.self_attn.v_proj.weight": "model.safetensors",
|
| 417 |
+
"vision_tower.encoder.layers.12.layer_norm1.bias": "model.safetensors",
|
| 418 |
+
"vision_tower.encoder.layers.12.layer_norm1.weight": "model.safetensors",
|
| 419 |
+
"vision_tower.encoder.layers.12.layer_norm2.bias": "model.safetensors",
|
| 420 |
+
"vision_tower.encoder.layers.12.layer_norm2.weight": "model.safetensors",
|
| 421 |
+
"vision_tower.encoder.layers.12.mlp.fc1.bias": "model.safetensors",
|
| 422 |
+
"vision_tower.encoder.layers.12.mlp.fc1.weight": "model.safetensors",
|
| 423 |
+
"vision_tower.encoder.layers.12.mlp.fc2.bias": "model.safetensors",
|
| 424 |
+
"vision_tower.encoder.layers.12.mlp.fc2.weight": "model.safetensors",
|
| 425 |
+
"vision_tower.encoder.layers.12.self_attn.k_proj.bias": "model.safetensors",
|
| 426 |
+
"vision_tower.encoder.layers.12.self_attn.k_proj.weight": "model.safetensors",
|
| 427 |
+
"vision_tower.encoder.layers.12.self_attn.out_proj.bias": "model.safetensors",
|
| 428 |
+
"vision_tower.encoder.layers.12.self_attn.out_proj.weight": "model.safetensors",
|
| 429 |
+
"vision_tower.encoder.layers.12.self_attn.q_proj.bias": "model.safetensors",
|
| 430 |
+
"vision_tower.encoder.layers.12.self_attn.q_proj.weight": "model.safetensors",
|
| 431 |
+
"vision_tower.encoder.layers.12.self_attn.v_proj.bias": "model.safetensors",
|
| 432 |
+
"vision_tower.encoder.layers.12.self_attn.v_proj.weight": "model.safetensors",
|
| 433 |
+
"vision_tower.encoder.layers.13.layer_norm1.bias": "model.safetensors",
|
| 434 |
+
"vision_tower.encoder.layers.13.layer_norm1.weight": "model.safetensors",
|
| 435 |
+
"vision_tower.encoder.layers.13.layer_norm2.bias": "model.safetensors",
|
| 436 |
+
"vision_tower.encoder.layers.13.layer_norm2.weight": "model.safetensors",
|
| 437 |
+
"vision_tower.encoder.layers.13.mlp.fc1.bias": "model.safetensors",
|
| 438 |
+
"vision_tower.encoder.layers.13.mlp.fc1.weight": "model.safetensors",
|
| 439 |
+
"vision_tower.encoder.layers.13.mlp.fc2.bias": "model.safetensors",
|
| 440 |
+
"vision_tower.encoder.layers.13.mlp.fc2.weight": "model.safetensors",
|
| 441 |
+
"vision_tower.encoder.layers.13.self_attn.k_proj.bias": "model.safetensors",
|
| 442 |
+
"vision_tower.encoder.layers.13.self_attn.k_proj.weight": "model.safetensors",
|
| 443 |
+
"vision_tower.encoder.layers.13.self_attn.out_proj.bias": "model.safetensors",
|
| 444 |
+
"vision_tower.encoder.layers.13.self_attn.out_proj.weight": "model.safetensors",
|
| 445 |
+
"vision_tower.encoder.layers.13.self_attn.q_proj.bias": "model.safetensors",
|
| 446 |
+
"vision_tower.encoder.layers.13.self_attn.q_proj.weight": "model.safetensors",
|
| 447 |
+
"vision_tower.encoder.layers.13.self_attn.v_proj.bias": "model.safetensors",
|
| 448 |
+
"vision_tower.encoder.layers.13.self_attn.v_proj.weight": "model.safetensors",
|
| 449 |
+
"vision_tower.encoder.layers.14.layer_norm1.bias": "model.safetensors",
|
| 450 |
+
"vision_tower.encoder.layers.14.layer_norm1.weight": "model.safetensors",
|
| 451 |
+
"vision_tower.encoder.layers.14.layer_norm2.bias": "model.safetensors",
|
| 452 |
+
"vision_tower.encoder.layers.14.layer_norm2.weight": "model.safetensors",
|
| 453 |
+
"vision_tower.encoder.layers.14.mlp.fc1.bias": "model.safetensors",
|
| 454 |
+
"vision_tower.encoder.layers.14.mlp.fc1.weight": "model.safetensors",
|
| 455 |
+
"vision_tower.encoder.layers.14.mlp.fc2.bias": "model.safetensors",
|
| 456 |
+
"vision_tower.encoder.layers.14.mlp.fc2.weight": "model.safetensors",
|
| 457 |
+
"vision_tower.encoder.layers.14.self_attn.k_proj.bias": "model.safetensors",
|
| 458 |
+
"vision_tower.encoder.layers.14.self_attn.k_proj.weight": "model.safetensors",
|
| 459 |
+
"vision_tower.encoder.layers.14.self_attn.out_proj.bias": "model.safetensors",
|
| 460 |
+
"vision_tower.encoder.layers.14.self_attn.out_proj.weight": "model.safetensors",
|
| 461 |
+
"vision_tower.encoder.layers.14.self_attn.q_proj.bias": "model.safetensors",
|
| 462 |
+
"vision_tower.encoder.layers.14.self_attn.q_proj.weight": "model.safetensors",
|
| 463 |
+
"vision_tower.encoder.layers.14.self_attn.v_proj.bias": "model.safetensors",
|
| 464 |
+
"vision_tower.encoder.layers.14.self_attn.v_proj.weight": "model.safetensors",
|
| 465 |
+
"vision_tower.encoder.layers.15.layer_norm1.bias": "model.safetensors",
|
| 466 |
+
"vision_tower.encoder.layers.15.layer_norm1.weight": "model.safetensors",
|
| 467 |
+
"vision_tower.encoder.layers.15.layer_norm2.bias": "model.safetensors",
|
| 468 |
+
"vision_tower.encoder.layers.15.layer_norm2.weight": "model.safetensors",
|
| 469 |
+
"vision_tower.encoder.layers.15.mlp.fc1.bias": "model.safetensors",
|
| 470 |
+
"vision_tower.encoder.layers.15.mlp.fc1.weight": "model.safetensors",
|
| 471 |
+
"vision_tower.encoder.layers.15.mlp.fc2.bias": "model.safetensors",
|
| 472 |
+
"vision_tower.encoder.layers.15.mlp.fc2.weight": "model.safetensors",
|
| 473 |
+
"vision_tower.encoder.layers.15.self_attn.k_proj.bias": "model.safetensors",
|
| 474 |
+
"vision_tower.encoder.layers.15.self_attn.k_proj.weight": "model.safetensors",
|
| 475 |
+
"vision_tower.encoder.layers.15.self_attn.out_proj.bias": "model.safetensors",
|
| 476 |
+
"vision_tower.encoder.layers.15.self_attn.out_proj.weight": "model.safetensors",
|
| 477 |
+
"vision_tower.encoder.layers.15.self_attn.q_proj.bias": "model.safetensors",
|
| 478 |
+
"vision_tower.encoder.layers.15.self_attn.q_proj.weight": "model.safetensors",
|
| 479 |
+
"vision_tower.encoder.layers.15.self_attn.v_proj.bias": "model.safetensors",
|
| 480 |
+
"vision_tower.encoder.layers.15.self_attn.v_proj.weight": "model.safetensors",
|
| 481 |
+
"vision_tower.encoder.layers.16.layer_norm1.bias": "model.safetensors",
|
| 482 |
+
"vision_tower.encoder.layers.16.layer_norm1.weight": "model.safetensors",
|
| 483 |
+
"vision_tower.encoder.layers.16.layer_norm2.bias": "model.safetensors",
|
| 484 |
+
"vision_tower.encoder.layers.16.layer_norm2.weight": "model.safetensors",
|
| 485 |
+
"vision_tower.encoder.layers.16.mlp.fc1.bias": "model.safetensors",
|
| 486 |
+
"vision_tower.encoder.layers.16.mlp.fc1.weight": "model.safetensors",
|
| 487 |
+
"vision_tower.encoder.layers.16.mlp.fc2.bias": "model.safetensors",
|
| 488 |
+
"vision_tower.encoder.layers.16.mlp.fc2.weight": "model.safetensors",
|
| 489 |
+
"vision_tower.encoder.layers.16.self_attn.k_proj.bias": "model.safetensors",
|
| 490 |
+
"vision_tower.encoder.layers.16.self_attn.k_proj.weight": "model.safetensors",
|
| 491 |
+
"vision_tower.encoder.layers.16.self_attn.out_proj.bias": "model.safetensors",
|
| 492 |
+
"vision_tower.encoder.layers.16.self_attn.out_proj.weight": "model.safetensors",
|
| 493 |
+
"vision_tower.encoder.layers.16.self_attn.q_proj.bias": "model.safetensors",
|
| 494 |
+
"vision_tower.encoder.layers.16.self_attn.q_proj.weight": "model.safetensors",
|
| 495 |
+
"vision_tower.encoder.layers.16.self_attn.v_proj.bias": "model.safetensors",
|
| 496 |
+
"vision_tower.encoder.layers.16.self_attn.v_proj.weight": "model.safetensors",
|
| 497 |
+
"vision_tower.encoder.layers.17.layer_norm1.bias": "model.safetensors",
|
| 498 |
+
"vision_tower.encoder.layers.17.layer_norm1.weight": "model.safetensors",
|
| 499 |
+
"vision_tower.encoder.layers.17.layer_norm2.bias": "model.safetensors",
|
| 500 |
+
"vision_tower.encoder.layers.17.layer_norm2.weight": "model.safetensors",
|
| 501 |
+
"vision_tower.encoder.layers.17.mlp.fc1.bias": "model.safetensors",
|
| 502 |
+
"vision_tower.encoder.layers.17.mlp.fc1.weight": "model.safetensors",
|
| 503 |
+
"vision_tower.encoder.layers.17.mlp.fc2.bias": "model.safetensors",
|
| 504 |
+
"vision_tower.encoder.layers.17.mlp.fc2.weight": "model.safetensors",
|
| 505 |
+
"vision_tower.encoder.layers.17.self_attn.k_proj.bias": "model.safetensors",
|
| 506 |
+
"vision_tower.encoder.layers.17.self_attn.k_proj.weight": "model.safetensors",
|
| 507 |
+
"vision_tower.encoder.layers.17.self_attn.out_proj.bias": "model.safetensors",
|
| 508 |
+
"vision_tower.encoder.layers.17.self_attn.out_proj.weight": "model.safetensors",
|
| 509 |
+
"vision_tower.encoder.layers.17.self_attn.q_proj.bias": "model.safetensors",
|
| 510 |
+
"vision_tower.encoder.layers.17.self_attn.q_proj.weight": "model.safetensors",
|
| 511 |
+
"vision_tower.encoder.layers.17.self_attn.v_proj.bias": "model.safetensors",
|
| 512 |
+
"vision_tower.encoder.layers.17.self_attn.v_proj.weight": "model.safetensors",
|
| 513 |
+
"vision_tower.encoder.layers.18.layer_norm1.bias": "model.safetensors",
|
| 514 |
+
"vision_tower.encoder.layers.18.layer_norm1.weight": "model.safetensors",
|
| 515 |
+
"vision_tower.encoder.layers.18.layer_norm2.bias": "model.safetensors",
|
| 516 |
+
"vision_tower.encoder.layers.18.layer_norm2.weight": "model.safetensors",
|
| 517 |
+
"vision_tower.encoder.layers.18.mlp.fc1.bias": "model.safetensors",
|
| 518 |
+
"vision_tower.encoder.layers.18.mlp.fc1.weight": "model.safetensors",
|
| 519 |
+
"vision_tower.encoder.layers.18.mlp.fc2.bias": "model.safetensors",
|
| 520 |
+
"vision_tower.encoder.layers.18.mlp.fc2.weight": "model.safetensors",
|
| 521 |
+
"vision_tower.encoder.layers.18.self_attn.k_proj.bias": "model.safetensors",
|
| 522 |
+
"vision_tower.encoder.layers.18.self_attn.k_proj.weight": "model.safetensors",
|
| 523 |
+
"vision_tower.encoder.layers.18.self_attn.out_proj.bias": "model.safetensors",
|
| 524 |
+
"vision_tower.encoder.layers.18.self_attn.out_proj.weight": "model.safetensors",
|
| 525 |
+
"vision_tower.encoder.layers.18.self_attn.q_proj.bias": "model.safetensors",
|
| 526 |
+
"vision_tower.encoder.layers.18.self_attn.q_proj.weight": "model.safetensors",
|
| 527 |
+
"vision_tower.encoder.layers.18.self_attn.v_proj.bias": "model.safetensors",
|
| 528 |
+
"vision_tower.encoder.layers.18.self_attn.v_proj.weight": "model.safetensors",
|
| 529 |
+
"vision_tower.encoder.layers.19.layer_norm1.bias": "model.safetensors",
|
| 530 |
+
"vision_tower.encoder.layers.19.layer_norm1.weight": "model.safetensors",
|
| 531 |
+
"vision_tower.encoder.layers.19.layer_norm2.bias": "model.safetensors",
|
| 532 |
+
"vision_tower.encoder.layers.19.layer_norm2.weight": "model.safetensors",
|
| 533 |
+
"vision_tower.encoder.layers.19.mlp.fc1.bias": "model.safetensors",
|
| 534 |
+
"vision_tower.encoder.layers.19.mlp.fc1.weight": "model.safetensors",
|
| 535 |
+
"vision_tower.encoder.layers.19.mlp.fc2.bias": "model.safetensors",
|
| 536 |
+
"vision_tower.encoder.layers.19.mlp.fc2.weight": "model.safetensors",
|
| 537 |
+
"vision_tower.encoder.layers.19.self_attn.k_proj.bias": "model.safetensors",
|
| 538 |
+
"vision_tower.encoder.layers.19.self_attn.k_proj.weight": "model.safetensors",
|
| 539 |
+
"vision_tower.encoder.layers.19.self_attn.out_proj.bias": "model.safetensors",
|
| 540 |
+
"vision_tower.encoder.layers.19.self_attn.out_proj.weight": "model.safetensors",
|
| 541 |
+
"vision_tower.encoder.layers.19.self_attn.q_proj.bias": "model.safetensors",
|
| 542 |
+
"vision_tower.encoder.layers.19.self_attn.q_proj.weight": "model.safetensors",
|
| 543 |
+
"vision_tower.encoder.layers.19.self_attn.v_proj.bias": "model.safetensors",
|
| 544 |
+
"vision_tower.encoder.layers.19.self_attn.v_proj.weight": "model.safetensors",
|
| 545 |
+
"vision_tower.encoder.layers.2.layer_norm1.bias": "model.safetensors",
|
| 546 |
+
"vision_tower.encoder.layers.2.layer_norm1.weight": "model.safetensors",
|
| 547 |
+
"vision_tower.encoder.layers.2.layer_norm2.bias": "model.safetensors",
|
| 548 |
+
"vision_tower.encoder.layers.2.layer_norm2.weight": "model.safetensors",
|
| 549 |
+
"vision_tower.encoder.layers.2.mlp.fc1.bias": "model.safetensors",
|
| 550 |
+
"vision_tower.encoder.layers.2.mlp.fc1.weight": "model.safetensors",
|
| 551 |
+
"vision_tower.encoder.layers.2.mlp.fc2.bias": "model.safetensors",
|
| 552 |
+
"vision_tower.encoder.layers.2.mlp.fc2.weight": "model.safetensors",
|
| 553 |
+
"vision_tower.encoder.layers.2.self_attn.k_proj.bias": "model.safetensors",
|
| 554 |
+
"vision_tower.encoder.layers.2.self_attn.k_proj.weight": "model.safetensors",
|
| 555 |
+
"vision_tower.encoder.layers.2.self_attn.out_proj.bias": "model.safetensors",
|
| 556 |
+
"vision_tower.encoder.layers.2.self_attn.out_proj.weight": "model.safetensors",
|
| 557 |
+
"vision_tower.encoder.layers.2.self_attn.q_proj.bias": "model.safetensors",
|
| 558 |
+
"vision_tower.encoder.layers.2.self_attn.q_proj.weight": "model.safetensors",
|
| 559 |
+
"vision_tower.encoder.layers.2.self_attn.v_proj.bias": "model.safetensors",
|
| 560 |
+
"vision_tower.encoder.layers.2.self_attn.v_proj.weight": "model.safetensors",
|
| 561 |
+
"vision_tower.encoder.layers.20.layer_norm1.bias": "model.safetensors",
|
| 562 |
+
"vision_tower.encoder.layers.20.layer_norm1.weight": "model.safetensors",
|
| 563 |
+
"vision_tower.encoder.layers.20.layer_norm2.bias": "model.safetensors",
|
| 564 |
+
"vision_tower.encoder.layers.20.layer_norm2.weight": "model.safetensors",
|
| 565 |
+
"vision_tower.encoder.layers.20.mlp.fc1.bias": "model.safetensors",
|
| 566 |
+
"vision_tower.encoder.layers.20.mlp.fc1.weight": "model.safetensors",
|
| 567 |
+
"vision_tower.encoder.layers.20.mlp.fc2.bias": "model.safetensors",
|
| 568 |
+
"vision_tower.encoder.layers.20.mlp.fc2.weight": "model.safetensors",
|
| 569 |
+
"vision_tower.encoder.layers.20.self_attn.k_proj.bias": "model.safetensors",
|
| 570 |
+
"vision_tower.encoder.layers.20.self_attn.k_proj.weight": "model.safetensors",
|
| 571 |
+
"vision_tower.encoder.layers.20.self_attn.out_proj.bias": "model.safetensors",
|
| 572 |
+
"vision_tower.encoder.layers.20.self_attn.out_proj.weight": "model.safetensors",
|
| 573 |
+
"vision_tower.encoder.layers.20.self_attn.q_proj.bias": "model.safetensors",
|
| 574 |
+
"vision_tower.encoder.layers.20.self_attn.q_proj.weight": "model.safetensors",
|
| 575 |
+
"vision_tower.encoder.layers.20.self_attn.v_proj.bias": "model.safetensors",
|
| 576 |
+
"vision_tower.encoder.layers.20.self_attn.v_proj.weight": "model.safetensors",
|
| 577 |
+
"vision_tower.encoder.layers.21.layer_norm1.bias": "model.safetensors",
|
| 578 |
+
"vision_tower.encoder.layers.21.layer_norm1.weight": "model.safetensors",
|
| 579 |
+
"vision_tower.encoder.layers.21.layer_norm2.bias": "model.safetensors",
|
| 580 |
+
"vision_tower.encoder.layers.21.layer_norm2.weight": "model.safetensors",
|
| 581 |
+
"vision_tower.encoder.layers.21.mlp.fc1.bias": "model.safetensors",
|
| 582 |
+
"vision_tower.encoder.layers.21.mlp.fc1.weight": "model.safetensors",
|
| 583 |
+
"vision_tower.encoder.layers.21.mlp.fc2.bias": "model.safetensors",
|
| 584 |
+
"vision_tower.encoder.layers.21.mlp.fc2.weight": "model.safetensors",
|
| 585 |
+
"vision_tower.encoder.layers.21.self_attn.k_proj.bias": "model.safetensors",
|
| 586 |
+
"vision_tower.encoder.layers.21.self_attn.k_proj.weight": "model.safetensors",
|
| 587 |
+
"vision_tower.encoder.layers.21.self_attn.out_proj.bias": "model.safetensors",
|
| 588 |
+
"vision_tower.encoder.layers.21.self_attn.out_proj.weight": "model.safetensors",
|
| 589 |
+
"vision_tower.encoder.layers.21.self_attn.q_proj.bias": "model.safetensors",
|
| 590 |
+
"vision_tower.encoder.layers.21.self_attn.q_proj.weight": "model.safetensors",
|
| 591 |
+
"vision_tower.encoder.layers.21.self_attn.v_proj.bias": "model.safetensors",
|
| 592 |
+
"vision_tower.encoder.layers.21.self_attn.v_proj.weight": "model.safetensors",
|
| 593 |
+
"vision_tower.encoder.layers.22.layer_norm1.bias": "model.safetensors",
|
| 594 |
+
"vision_tower.encoder.layers.22.layer_norm1.weight": "model.safetensors",
|
| 595 |
+
"vision_tower.encoder.layers.22.layer_norm2.bias": "model.safetensors",
|
| 596 |
+
"vision_tower.encoder.layers.22.layer_norm2.weight": "model.safetensors",
|
| 597 |
+
"vision_tower.encoder.layers.22.mlp.fc1.bias": "model.safetensors",
|
| 598 |
+
"vision_tower.encoder.layers.22.mlp.fc1.weight": "model.safetensors",
|
| 599 |
+
"vision_tower.encoder.layers.22.mlp.fc2.bias": "model.safetensors",
|
| 600 |
+
"vision_tower.encoder.layers.22.mlp.fc2.weight": "model.safetensors",
|
| 601 |
+
"vision_tower.encoder.layers.22.self_attn.k_proj.bias": "model.safetensors",
|
| 602 |
+
"vision_tower.encoder.layers.22.self_attn.k_proj.weight": "model.safetensors",
|
| 603 |
+
"vision_tower.encoder.layers.22.self_attn.out_proj.bias": "model.safetensors",
|
| 604 |
+
"vision_tower.encoder.layers.22.self_attn.out_proj.weight": "model.safetensors",
|
| 605 |
+
"vision_tower.encoder.layers.22.self_attn.q_proj.bias": "model.safetensors",
|
| 606 |
+
"vision_tower.encoder.layers.22.self_attn.q_proj.weight": "model.safetensors",
|
| 607 |
+
"vision_tower.encoder.layers.22.self_attn.v_proj.bias": "model.safetensors",
|
| 608 |
+
"vision_tower.encoder.layers.22.self_attn.v_proj.weight": "model.safetensors",
|
| 609 |
+
"vision_tower.encoder.layers.23.layer_norm1.bias": "model.safetensors",
|
| 610 |
+
"vision_tower.encoder.layers.23.layer_norm1.weight": "model.safetensors",
|
| 611 |
+
"vision_tower.encoder.layers.23.layer_norm2.bias": "model.safetensors",
|
| 612 |
+
"vision_tower.encoder.layers.23.layer_norm2.weight": "model.safetensors",
|
| 613 |
+
"vision_tower.encoder.layers.23.mlp.fc1.bias": "model.safetensors",
|
| 614 |
+
"vision_tower.encoder.layers.23.mlp.fc1.weight": "model.safetensors",
|
| 615 |
+
"vision_tower.encoder.layers.23.mlp.fc2.bias": "model.safetensors",
|
| 616 |
+
"vision_tower.encoder.layers.23.mlp.fc2.weight": "model.safetensors",
|
| 617 |
+
"vision_tower.encoder.layers.23.self_attn.k_proj.bias": "model.safetensors",
|
| 618 |
+
"vision_tower.encoder.layers.23.self_attn.k_proj.weight": "model.safetensors",
|
| 619 |
+
"vision_tower.encoder.layers.23.self_attn.out_proj.bias": "model.safetensors",
|
| 620 |
+
"vision_tower.encoder.layers.23.self_attn.out_proj.weight": "model.safetensors",
|
| 621 |
+
"vision_tower.encoder.layers.23.self_attn.q_proj.bias": "model.safetensors",
|
| 622 |
+
"vision_tower.encoder.layers.23.self_attn.q_proj.weight": "model.safetensors",
|
| 623 |
+
"vision_tower.encoder.layers.23.self_attn.v_proj.bias": "model.safetensors",
|
| 624 |
+
"vision_tower.encoder.layers.23.self_attn.v_proj.weight": "model.safetensors",
|
| 625 |
+
"vision_tower.encoder.layers.24.layer_norm1.bias": "model.safetensors",
|
| 626 |
+
"vision_tower.encoder.layers.24.layer_norm1.weight": "model.safetensors",
|
| 627 |
+
"vision_tower.encoder.layers.24.layer_norm2.bias": "model.safetensors",
|
| 628 |
+
"vision_tower.encoder.layers.24.layer_norm2.weight": "model.safetensors",
|
| 629 |
+
"vision_tower.encoder.layers.24.mlp.fc1.bias": "model.safetensors",
|
| 630 |
+
"vision_tower.encoder.layers.24.mlp.fc1.weight": "model.safetensors",
|
| 631 |
+
"vision_tower.encoder.layers.24.mlp.fc2.bias": "model.safetensors",
|
| 632 |
+
"vision_tower.encoder.layers.24.mlp.fc2.weight": "model.safetensors",
|
| 633 |
+
"vision_tower.encoder.layers.24.self_attn.k_proj.bias": "model.safetensors",
|
| 634 |
+
"vision_tower.encoder.layers.24.self_attn.k_proj.weight": "model.safetensors",
|
| 635 |
+
"vision_tower.encoder.layers.24.self_attn.out_proj.bias": "model.safetensors",
|
| 636 |
+
"vision_tower.encoder.layers.24.self_attn.out_proj.weight": "model.safetensors",
|
| 637 |
+
"vision_tower.encoder.layers.24.self_attn.q_proj.bias": "model.safetensors",
|
| 638 |
+
"vision_tower.encoder.layers.24.self_attn.q_proj.weight": "model.safetensors",
|
| 639 |
+
"vision_tower.encoder.layers.24.self_attn.v_proj.bias": "model.safetensors",
|
| 640 |
+
"vision_tower.encoder.layers.24.self_attn.v_proj.weight": "model.safetensors",
|
| 641 |
+
"vision_tower.encoder.layers.25.layer_norm1.bias": "model.safetensors",
|
| 642 |
+
"vision_tower.encoder.layers.25.layer_norm1.weight": "model.safetensors",
|
| 643 |
+
"vision_tower.encoder.layers.25.layer_norm2.bias": "model.safetensors",
|
| 644 |
+
"vision_tower.encoder.layers.25.layer_norm2.weight": "model.safetensors",
|
| 645 |
+
"vision_tower.encoder.layers.25.mlp.fc1.bias": "model.safetensors",
|
| 646 |
+
"vision_tower.encoder.layers.25.mlp.fc1.weight": "model.safetensors",
|
| 647 |
+
"vision_tower.encoder.layers.25.mlp.fc2.bias": "model.safetensors",
|
| 648 |
+
"vision_tower.encoder.layers.25.mlp.fc2.weight": "model.safetensors",
|
| 649 |
+
"vision_tower.encoder.layers.25.self_attn.k_proj.bias": "model.safetensors",
|
| 650 |
+
"vision_tower.encoder.layers.25.self_attn.k_proj.weight": "model.safetensors",
|
| 651 |
+
"vision_tower.encoder.layers.25.self_attn.out_proj.bias": "model.safetensors",
|
| 652 |
+
"vision_tower.encoder.layers.25.self_attn.out_proj.weight": "model.safetensors",
|
| 653 |
+
"vision_tower.encoder.layers.25.self_attn.q_proj.bias": "model.safetensors",
|
| 654 |
+
"vision_tower.encoder.layers.25.self_attn.q_proj.weight": "model.safetensors",
|
| 655 |
+
"vision_tower.encoder.layers.25.self_attn.v_proj.bias": "model.safetensors",
|
| 656 |
+
"vision_tower.encoder.layers.25.self_attn.v_proj.weight": "model.safetensors",
|
| 657 |
+
"vision_tower.encoder.layers.3.layer_norm1.bias": "model.safetensors",
|
| 658 |
+
"vision_tower.encoder.layers.3.layer_norm1.weight": "model.safetensors",
|
| 659 |
+
"vision_tower.encoder.layers.3.layer_norm2.bias": "model.safetensors",
|
| 660 |
+
"vision_tower.encoder.layers.3.layer_norm2.weight": "model.safetensors",
|
| 661 |
+
"vision_tower.encoder.layers.3.mlp.fc1.bias": "model.safetensors",
|
| 662 |
+
"vision_tower.encoder.layers.3.mlp.fc1.weight": "model.safetensors",
|
| 663 |
+
"vision_tower.encoder.layers.3.mlp.fc2.bias": "model.safetensors",
|
| 664 |
+
"vision_tower.encoder.layers.3.mlp.fc2.weight": "model.safetensors",
|
| 665 |
+
"vision_tower.encoder.layers.3.self_attn.k_proj.bias": "model.safetensors",
|
| 666 |
+
"vision_tower.encoder.layers.3.self_attn.k_proj.weight": "model.safetensors",
|
| 667 |
+
"vision_tower.encoder.layers.3.self_attn.out_proj.bias": "model.safetensors",
|
| 668 |
+
"vision_tower.encoder.layers.3.self_attn.out_proj.weight": "model.safetensors",
|
| 669 |
+
"vision_tower.encoder.layers.3.self_attn.q_proj.bias": "model.safetensors",
|
| 670 |
+
"vision_tower.encoder.layers.3.self_attn.q_proj.weight": "model.safetensors",
|
| 671 |
+
"vision_tower.encoder.layers.3.self_attn.v_proj.bias": "model.safetensors",
|
| 672 |
+
"vision_tower.encoder.layers.3.self_attn.v_proj.weight": "model.safetensors",
|
| 673 |
+
"vision_tower.encoder.layers.4.layer_norm1.bias": "model.safetensors",
|
| 674 |
+
"vision_tower.encoder.layers.4.layer_norm1.weight": "model.safetensors",
|
| 675 |
+
"vision_tower.encoder.layers.4.layer_norm2.bias": "model.safetensors",
|
| 676 |
+
"vision_tower.encoder.layers.4.layer_norm2.weight": "model.safetensors",
|
| 677 |
+
"vision_tower.encoder.layers.4.mlp.fc1.bias": "model.safetensors",
|
| 678 |
+
"vision_tower.encoder.layers.4.mlp.fc1.weight": "model.safetensors",
|
| 679 |
+
"vision_tower.encoder.layers.4.mlp.fc2.bias": "model.safetensors",
|
| 680 |
+
"vision_tower.encoder.layers.4.mlp.fc2.weight": "model.safetensors",
|
| 681 |
+
"vision_tower.encoder.layers.4.self_attn.k_proj.bias": "model.safetensors",
|
| 682 |
+
"vision_tower.encoder.layers.4.self_attn.k_proj.weight": "model.safetensors",
|
| 683 |
+
"vision_tower.encoder.layers.4.self_attn.out_proj.bias": "model.safetensors",
|
| 684 |
+
"vision_tower.encoder.layers.4.self_attn.out_proj.weight": "model.safetensors",
|
| 685 |
+
"vision_tower.encoder.layers.4.self_attn.q_proj.bias": "model.safetensors",
|
| 686 |
+
"vision_tower.encoder.layers.4.self_attn.q_proj.weight": "model.safetensors",
|
| 687 |
+
"vision_tower.encoder.layers.4.self_attn.v_proj.bias": "model.safetensors",
|
| 688 |
+
"vision_tower.encoder.layers.4.self_attn.v_proj.weight": "model.safetensors",
|
| 689 |
+
"vision_tower.encoder.layers.5.layer_norm1.bias": "model.safetensors",
|
| 690 |
+
"vision_tower.encoder.layers.5.layer_norm1.weight": "model.safetensors",
|
| 691 |
+
"vision_tower.encoder.layers.5.layer_norm2.bias": "model.safetensors",
|
| 692 |
+
"vision_tower.encoder.layers.5.layer_norm2.weight": "model.safetensors",
|
| 693 |
+
"vision_tower.encoder.layers.5.mlp.fc1.bias": "model.safetensors",
|
| 694 |
+
"vision_tower.encoder.layers.5.mlp.fc1.weight": "model.safetensors",
|
| 695 |
+
"vision_tower.encoder.layers.5.mlp.fc2.bias": "model.safetensors",
|
| 696 |
+
"vision_tower.encoder.layers.5.mlp.fc2.weight": "model.safetensors",
|
| 697 |
+
"vision_tower.encoder.layers.5.self_attn.k_proj.bias": "model.safetensors",
|
| 698 |
+
"vision_tower.encoder.layers.5.self_attn.k_proj.weight": "model.safetensors",
|
| 699 |
+
"vision_tower.encoder.layers.5.self_attn.out_proj.bias": "model.safetensors",
|
| 700 |
+
"vision_tower.encoder.layers.5.self_attn.out_proj.weight": "model.safetensors",
|
| 701 |
+
"vision_tower.encoder.layers.5.self_attn.q_proj.bias": "model.safetensors",
|
| 702 |
+
"vision_tower.encoder.layers.5.self_attn.q_proj.weight": "model.safetensors",
|
| 703 |
+
"vision_tower.encoder.layers.5.self_attn.v_proj.bias": "model.safetensors",
|
| 704 |
+
"vision_tower.encoder.layers.5.self_attn.v_proj.weight": "model.safetensors",
|
| 705 |
+
"vision_tower.encoder.layers.6.layer_norm1.bias": "model.safetensors",
|
| 706 |
+
"vision_tower.encoder.layers.6.layer_norm1.weight": "model.safetensors",
|
| 707 |
+
"vision_tower.encoder.layers.6.layer_norm2.bias": "model.safetensors",
|
| 708 |
+
"vision_tower.encoder.layers.6.layer_norm2.weight": "model.safetensors",
|
| 709 |
+
"vision_tower.encoder.layers.6.mlp.fc1.bias": "model.safetensors",
|
| 710 |
+
"vision_tower.encoder.layers.6.mlp.fc1.weight": "model.safetensors",
|
| 711 |
+
"vision_tower.encoder.layers.6.mlp.fc2.bias": "model.safetensors",
|
| 712 |
+
"vision_tower.encoder.layers.6.mlp.fc2.weight": "model.safetensors",
|
| 713 |
+
"vision_tower.encoder.layers.6.self_attn.k_proj.bias": "model.safetensors",
|
| 714 |
+
"vision_tower.encoder.layers.6.self_attn.k_proj.weight": "model.safetensors",
|
| 715 |
+
"vision_tower.encoder.layers.6.self_attn.out_proj.bias": "model.safetensors",
|
| 716 |
+
"vision_tower.encoder.layers.6.self_attn.out_proj.weight": "model.safetensors",
|
| 717 |
+
"vision_tower.encoder.layers.6.self_attn.q_proj.bias": "model.safetensors",
|
| 718 |
+
"vision_tower.encoder.layers.6.self_attn.q_proj.weight": "model.safetensors",
|
| 719 |
+
"vision_tower.encoder.layers.6.self_attn.v_proj.bias": "model.safetensors",
|
| 720 |
+
"vision_tower.encoder.layers.6.self_attn.v_proj.weight": "model.safetensors",
|
| 721 |
+
"vision_tower.encoder.layers.7.layer_norm1.bias": "model.safetensors",
|
| 722 |
+
"vision_tower.encoder.layers.7.layer_norm1.weight": "model.safetensors",
|
| 723 |
+
"vision_tower.encoder.layers.7.layer_norm2.bias": "model.safetensors",
|
| 724 |
+
"vision_tower.encoder.layers.7.layer_norm2.weight": "model.safetensors",
|
| 725 |
+
"vision_tower.encoder.layers.7.mlp.fc1.bias": "model.safetensors",
|
| 726 |
+
"vision_tower.encoder.layers.7.mlp.fc1.weight": "model.safetensors",
|
| 727 |
+
"vision_tower.encoder.layers.7.mlp.fc2.bias": "model.safetensors",
|
| 728 |
+
"vision_tower.encoder.layers.7.mlp.fc2.weight": "model.safetensors",
|
| 729 |
+
"vision_tower.encoder.layers.7.self_attn.k_proj.bias": "model.safetensors",
|
| 730 |
+
"vision_tower.encoder.layers.7.self_attn.k_proj.weight": "model.safetensors",
|
| 731 |
+
"vision_tower.encoder.layers.7.self_attn.out_proj.bias": "model.safetensors",
|
| 732 |
+
"vision_tower.encoder.layers.7.self_attn.out_proj.weight": "model.safetensors",
|
| 733 |
+
"vision_tower.encoder.layers.7.self_attn.q_proj.bias": "model.safetensors",
|
| 734 |
+
"vision_tower.encoder.layers.7.self_attn.q_proj.weight": "model.safetensors",
|
| 735 |
+
"vision_tower.encoder.layers.7.self_attn.v_proj.bias": "model.safetensors",
|
| 736 |
+
"vision_tower.encoder.layers.7.self_attn.v_proj.weight": "model.safetensors",
|
| 737 |
+
"vision_tower.encoder.layers.8.layer_norm1.bias": "model.safetensors",
|
| 738 |
+
"vision_tower.encoder.layers.8.layer_norm1.weight": "model.safetensors",
|
| 739 |
+
"vision_tower.encoder.layers.8.layer_norm2.bias": "model.safetensors",
|
| 740 |
+
"vision_tower.encoder.layers.8.layer_norm2.weight": "model.safetensors",
|
| 741 |
+
"vision_tower.encoder.layers.8.mlp.fc1.bias": "model.safetensors",
|
| 742 |
+
"vision_tower.encoder.layers.8.mlp.fc1.weight": "model.safetensors",
|
| 743 |
+
"vision_tower.encoder.layers.8.mlp.fc2.bias": "model.safetensors",
|
| 744 |
+
"vision_tower.encoder.layers.8.mlp.fc2.weight": "model.safetensors",
|
| 745 |
+
"vision_tower.encoder.layers.8.self_attn.k_proj.bias": "model.safetensors",
|
| 746 |
+
"vision_tower.encoder.layers.8.self_attn.k_proj.weight": "model.safetensors",
|
| 747 |
+
"vision_tower.encoder.layers.8.self_attn.out_proj.bias": "model.safetensors",
|
| 748 |
+
"vision_tower.encoder.layers.8.self_attn.out_proj.weight": "model.safetensors",
|
| 749 |
+
"vision_tower.encoder.layers.8.self_attn.q_proj.bias": "model.safetensors",
|
| 750 |
+
"vision_tower.encoder.layers.8.self_attn.q_proj.weight": "model.safetensors",
|
| 751 |
+
"vision_tower.encoder.layers.8.self_attn.v_proj.bias": "model.safetensors",
|
| 752 |
+
"vision_tower.encoder.layers.8.self_attn.v_proj.weight": "model.safetensors",
|
| 753 |
+
"vision_tower.encoder.layers.9.layer_norm1.bias": "model.safetensors",
|
| 754 |
+
"vision_tower.encoder.layers.9.layer_norm1.weight": "model.safetensors",
|
| 755 |
+
"vision_tower.encoder.layers.9.layer_norm2.bias": "model.safetensors",
|
| 756 |
+
"vision_tower.encoder.layers.9.layer_norm2.weight": "model.safetensors",
|
| 757 |
+
"vision_tower.encoder.layers.9.mlp.fc1.bias": "model.safetensors",
|
| 758 |
+
"vision_tower.encoder.layers.9.mlp.fc1.weight": "model.safetensors",
|
| 759 |
+
"vision_tower.encoder.layers.9.mlp.fc2.bias": "model.safetensors",
|
| 760 |
+
"vision_tower.encoder.layers.9.mlp.fc2.weight": "model.safetensors",
|
| 761 |
+
"vision_tower.encoder.layers.9.self_attn.k_proj.bias": "model.safetensors",
|
| 762 |
+
"vision_tower.encoder.layers.9.self_attn.k_proj.weight": "model.safetensors",
|
| 763 |
+
"vision_tower.encoder.layers.9.self_attn.out_proj.bias": "model.safetensors",
|
| 764 |
+
"vision_tower.encoder.layers.9.self_attn.out_proj.weight": "model.safetensors",
|
| 765 |
+
"vision_tower.encoder.layers.9.self_attn.q_proj.bias": "model.safetensors",
|
| 766 |
+
"vision_tower.encoder.layers.9.self_attn.q_proj.weight": "model.safetensors",
|
| 767 |
+
"vision_tower.encoder.layers.9.self_attn.v_proj.bias": "model.safetensors",
|
| 768 |
+
"vision_tower.encoder.layers.9.self_attn.v_proj.weight": "model.safetensors",
|
| 769 |
+
"vision_tower.post_layernorm.bias": "model.safetensors",
|
| 770 |
+
"vision_tower.post_layernorm.weight": "model.safetensors"
|
| 771 |
+
}
|
| 772 |
+
}
|
modeling_lfm2_vl.py
ADDED
|
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch LFM2-VL model."""
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from transformers import AutoConfig, AutoModel
|
| 8 |
+
from transformers.activations import ACT2FN
|
| 9 |
+
from transformers.cache_utils import Cache
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.generation import GenerationMixin
|
| 12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.models.lfm2.configuration_lfm2 import Lfm2Config
|
| 16 |
+
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
| 17 |
+
from transformers.models.siglip2.modeling_siglip2 import Siglip2VisionModel
|
| 18 |
+
from transformers.processing_utils import Unpack
|
| 19 |
+
from transformers.utils import can_return_tuple, logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Lfm2VlConfig(PretrainedConfig):
|
| 25 |
+
r"""
|
| 26 |
+
This is the configuration class to store the configuration of a [`Lfm2VlForConditionalGeneration`]. It is used to instantiate an
|
| 27 |
+
Lfm2Vl model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 28 |
+
with the defaults will yield a similar configuration to that of the Lfm2-VL-1.6B.
|
| 29 |
+
|
| 30 |
+
e.g. [LiquidAI/LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
vision_config (`AutoConfig | dict`, *optional*, defaults to `Siglip2ImageConfig`):
|
| 37 |
+
The config object or dictionary of the vision backbone.
|
| 38 |
+
text_config (`AutoConfig | dict`, *optional*, defaults to `Lfm2Config`):
|
| 39 |
+
The config object or dictionary of the text backbone.
|
| 40 |
+
image_token_id (`int`, *optional*, defaults to 396):
|
| 41 |
+
The image token index to encode the image prompt.
|
| 42 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 43 |
+
The activation function used by the multimodal projector.
|
| 44 |
+
projector_hidden_size (`int`, *optional*, defaults to 2056):
|
| 45 |
+
The hidden size of the multimodal projector.
|
| 46 |
+
projector_bias (`bool`, *optional*, defaults to `True`):
|
| 47 |
+
Whether to use bias in the multimodal projector.
|
| 48 |
+
downsample_factor (`int`, *optional*, defaults to 2):
|
| 49 |
+
The downsample_factor factor of the vision backbone.
|
| 50 |
+
vision_feature_layer (`int`, *optional*, defaults to -1):
|
| 51 |
+
The layer of the vision tower to use as features.
|
| 52 |
+
min_image_tokens (`int`, *optional*, defaults to 64):
|
| 53 |
+
The minimum number of image tokens for smart resize.
|
| 54 |
+
max_image_tokens (`int`, *optional*, defaults to 256):
|
| 55 |
+
The maximum number of image tokens for smart resize.
|
| 56 |
+
encoder_patch_size (`int`, *optional*, defaults to 16):
|
| 57 |
+
The patch size of the encoder.
|
| 58 |
+
max_num_patches (`int`, *optional*, defaults to 1024):
|
| 59 |
+
The maximum number of image tokens passed to the encoder per image or tile.
|
| 60 |
+
use_image_special_tokens (`bool`, *optional*, defaults to `True`):
|
| 61 |
+
Whether to use image special tokens.
|
| 62 |
+
do_image_splitting (`bool`, *optional*, defaults to `True`):
|
| 63 |
+
Whether to split large images into tiles.
|
| 64 |
+
min_tiles (`int`, *optional*, defaults to 2):
|
| 65 |
+
The minimum number of tiles to split the image into.
|
| 66 |
+
max_tiles (`int`, *optional*, defaults to 10):
|
| 67 |
+
The maximum number of tiles to split the image into.
|
| 68 |
+
tile_size (`int`, *optional*, defaults to 512):
|
| 69 |
+
The size of the tile to split the image into.
|
| 70 |
+
max_pixels_tolerance (`float`, *optional*, defaults to 2.0):
|
| 71 |
+
The maximum tolerance for the number of pixels in the image before splitting.
|
| 72 |
+
use_thumbnail (`bool`, *optional*, defaults to `True`):
|
| 73 |
+
Whether to append the thumbnail of the image when splitting.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
model_type = "lfm2-vl"
|
| 77 |
+
attribute_map = {
|
| 78 |
+
"image_token_id": "image_token_index",
|
| 79 |
+
}
|
| 80 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
vision_config=None,
|
| 85 |
+
text_config=None,
|
| 86 |
+
image_token_index=396,
|
| 87 |
+
projector_hidden_act="gelu",
|
| 88 |
+
projector_hidden_size=2560,
|
| 89 |
+
projector_bias=True,
|
| 90 |
+
downsample_factor=2,
|
| 91 |
+
vision_feature_layer=-1,
|
| 92 |
+
min_image_tokens=64,
|
| 93 |
+
max_image_tokens=256,
|
| 94 |
+
encoder_patch_size=16,
|
| 95 |
+
max_num_patches=1024,
|
| 96 |
+
use_image_special_tokens=True,
|
| 97 |
+
do_image_splitting=True,
|
| 98 |
+
min_tiles=2,
|
| 99 |
+
max_tiles=10,
|
| 100 |
+
tile_size=512,
|
| 101 |
+
max_pixels_tolerance=2.0,
|
| 102 |
+
use_thumbnail=True,
|
| 103 |
+
torch_dtype=torch.bfloat16,
|
| 104 |
+
**kwargs,
|
| 105 |
+
):
|
| 106 |
+
self.vision_config = vision_config
|
| 107 |
+
self.text_config = text_config
|
| 108 |
+
self.image_token_index = image_token_index
|
| 109 |
+
self.projector_hidden_act = projector_hidden_act
|
| 110 |
+
self.projector_hidden_size = projector_hidden_size
|
| 111 |
+
self.projector_bias = projector_bias
|
| 112 |
+
self.downsample_factor = downsample_factor
|
| 113 |
+
self.vision_feature_layer = vision_feature_layer
|
| 114 |
+
self.min_image_tokens = min_image_tokens
|
| 115 |
+
self.max_image_tokens = max_image_tokens
|
| 116 |
+
self.encoder_patch_size = encoder_patch_size
|
| 117 |
+
self.max_num_patches = max_num_patches
|
| 118 |
+
self.use_image_special_tokens = use_image_special_tokens
|
| 119 |
+
self.do_image_splitting = do_image_splitting
|
| 120 |
+
self.min_tiles = min_tiles
|
| 121 |
+
self.max_tiles = max_tiles
|
| 122 |
+
self.tile_size = tile_size
|
| 123 |
+
self.max_pixels_tolerance = max_pixels_tolerance
|
| 124 |
+
self.use_thumbnail = use_thumbnail
|
| 125 |
+
self.torch_dtype = torch_dtype
|
| 126 |
+
|
| 127 |
+
if isinstance(vision_config, dict):
|
| 128 |
+
vision_config = Siglip2VisionConfig(**vision_config)
|
| 129 |
+
elif vision_config is None:
|
| 130 |
+
vision_config = Siglip2VisionConfig()
|
| 131 |
+
self.vision_config = vision_config
|
| 132 |
+
|
| 133 |
+
self.vision_config = vision_config
|
| 134 |
+
|
| 135 |
+
if isinstance(text_config, dict):
|
| 136 |
+
text_config = Lfm2Config(**text_config)
|
| 137 |
+
elif text_config is None:
|
| 138 |
+
text_config = Lfm2Config()
|
| 139 |
+
|
| 140 |
+
self.text_config = text_config
|
| 141 |
+
|
| 142 |
+
super().__init__(**kwargs)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@dataclass
|
| 146 |
+
class Lfm2VlModelOutputWithPast(BaseModelOutputWithPast):
|
| 147 |
+
r"""
|
| 148 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 149 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 150 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 151 |
+
|
| 152 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 153 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 154 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 155 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 156 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
image_hidden_states: torch.FloatTensor | None = None
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
@dataclass
|
| 163 |
+
class Lfm2VlCausalLMOutputWithPast(ModelOutput):
|
| 164 |
+
r"""
|
| 165 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 166 |
+
Language modeling loss (for next-token prediction).
|
| 167 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 168 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 169 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 170 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 171 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 172 |
+
|
| 173 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 174 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 175 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 176 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 177 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
loss: torch.FloatTensor | None = None
|
| 181 |
+
logits: torch.FloatTensor | None = None
|
| 182 |
+
past_key_values: list[torch.FloatTensor] | None = None
|
| 183 |
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
| 184 |
+
attentions: tuple[torch.FloatTensor] | None = None
|
| 185 |
+
image_hidden_states: torch.FloatTensor | None = None
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class Lfm2VlMultiModalProjector(nn.Module):
|
| 189 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 190 |
+
super().__init__()
|
| 191 |
+
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
| 192 |
+
self.layer_norm = nn.LayerNorm(in_channels)
|
| 193 |
+
self.linear_1 = nn.Linear(
|
| 194 |
+
in_channels,
|
| 195 |
+
config.projector_hidden_size,
|
| 196 |
+
bias=config.projector_bias,
|
| 197 |
+
)
|
| 198 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
| 199 |
+
self.linear_2 = nn.Linear(
|
| 200 |
+
config.projector_hidden_size,
|
| 201 |
+
config.text_config.hidden_size,
|
| 202 |
+
bias=config.projector_bias,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
def forward(self, image_features):
|
| 206 |
+
image_features = self.layer_norm(image_features)
|
| 207 |
+
hidden_states = self.linear_1(image_features)
|
| 208 |
+
hidden_states = self.act(hidden_states)
|
| 209 |
+
hidden_states = self.linear_2(hidden_states)
|
| 210 |
+
return hidden_states
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class PixelUnshuffleBlock(nn.Module):
|
| 214 |
+
def __init__(self, factor: int):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.factor = factor
|
| 217 |
+
|
| 218 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 219 |
+
n, w, h, c = x.size()
|
| 220 |
+
if w % self.factor != 0:
|
| 221 |
+
x = torch.concat(
|
| 222 |
+
[
|
| 223 |
+
x,
|
| 224 |
+
torch.zeros(
|
| 225 |
+
(n, self.factor - (w % self.factor), h, c), dtype=x.dtype
|
| 226 |
+
).to(x.device),
|
| 227 |
+
],
|
| 228 |
+
dim=1,
|
| 229 |
+
).contiguous()
|
| 230 |
+
n, w, h, c = x.size()
|
| 231 |
+
x = x.contiguous()
|
| 232 |
+
if h % self.factor != 0:
|
| 233 |
+
x = torch.concat(
|
| 234 |
+
[
|
| 235 |
+
x,
|
| 236 |
+
torch.zeros(
|
| 237 |
+
(n, w, self.factor - (h % self.factor), c), dtype=x.dtype
|
| 238 |
+
).to(x.device),
|
| 239 |
+
],
|
| 240 |
+
dim=2,
|
| 241 |
+
).contiguous()
|
| 242 |
+
n, w, h, c = x.size()
|
| 243 |
+
x = x.view(n, w, int(h / self.factor), int(c * self.factor))
|
| 244 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 245 |
+
x = x.view(
|
| 246 |
+
n, int(h / self.factor), int(w / self.factor), int(c * self.factor**2)
|
| 247 |
+
)
|
| 248 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 249 |
+
return x
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
class Lfm2VlPreTrainedModel(PreTrainedModel):
|
| 253 |
+
config: Lfm2VlConfig
|
| 254 |
+
base_model_prefix = ""
|
| 255 |
+
supports_gradient_checkpointing = True
|
| 256 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 257 |
+
|
| 258 |
+
_supports_flash_attn = True
|
| 259 |
+
_supports_sdpa = True
|
| 260 |
+
|
| 261 |
+
_can_compile_fullgraph = False
|
| 262 |
+
_supports_flex_attn = True
|
| 263 |
+
_supports_attention_backend = True
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class Lfm2VlModel(Lfm2VlPreTrainedModel):
|
| 267 |
+
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
| 268 |
+
|
| 269 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 270 |
+
super().__init__(config)
|
| 271 |
+
self.vision_tower = Siglip2VisionModel(config.vision_config)
|
| 272 |
+
|
| 273 |
+
if config.vision_feature_layer != -1:
|
| 274 |
+
self.vision_tower.vision_model.encoder.layers = (
|
| 275 |
+
self.vision_tower.vision_model.encoder.layers[
|
| 276 |
+
: config.vision_feature_layer + 1
|
| 277 |
+
]
|
| 278 |
+
)
|
| 279 |
+
if config.downsample_factor > 1:
|
| 280 |
+
self.pixel_unshuffle = PixelUnshuffleBlock(config.downsample_factor)
|
| 281 |
+
else:
|
| 282 |
+
self.pixel_unshuffle = nn.Identity()
|
| 283 |
+
|
| 284 |
+
self.multi_modal_projector = Lfm2VlMultiModalProjector(config)
|
| 285 |
+
self.language_model = AutoModel.from_config(config.text_config)
|
| 286 |
+
self.post_init()
|
| 287 |
+
|
| 288 |
+
def get_input_embeddings(self):
|
| 289 |
+
return self.language_model.get_input_embeddings()
|
| 290 |
+
|
| 291 |
+
def set_input_embeddings(self, value):
|
| 292 |
+
self.language_model.set_input_embeddings(value)
|
| 293 |
+
|
| 294 |
+
def set_decoder(self, decoder):
|
| 295 |
+
self.language_model = decoder
|
| 296 |
+
|
| 297 |
+
def get_decoder(self):
|
| 298 |
+
return self.language_model
|
| 299 |
+
|
| 300 |
+
def get_image_features(
|
| 301 |
+
self,
|
| 302 |
+
pixel_values: torch.FloatTensor,
|
| 303 |
+
spatial_shapes: torch.Tensor,
|
| 304 |
+
pixel_attention_mask: torch.Tensor,
|
| 305 |
+
**kwargs,
|
| 306 |
+
) -> list[torch.Tensor]:
|
| 307 |
+
"""
|
| 308 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
|
| 312 |
+
The tensors corresponding to the input images.
|
| 313 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`):
|
| 314 |
+
The spatial shapes of the input images.
|
| 315 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`):
|
| 316 |
+
The pixel attention mask of the input images.
|
| 317 |
+
Returns:
|
| 318 |
+
image_features (`list[torch.Tensor]`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
| 319 |
+
"""
|
| 320 |
+
image_outputs = self.vision_tower(
|
| 321 |
+
pixel_values=pixel_values,
|
| 322 |
+
spatial_shapes=spatial_shapes,
|
| 323 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 324 |
+
).last_hidden_state
|
| 325 |
+
|
| 326 |
+
img_feature_lengths = pixel_attention_mask.sum(dim=1)
|
| 327 |
+
image_features = []
|
| 328 |
+
|
| 329 |
+
for img_idx in range(image_outputs.size(0)):
|
| 330 |
+
feature = image_outputs[img_idx]
|
| 331 |
+
# unpad the image representation
|
| 332 |
+
feature = feature[: img_feature_lengths[img_idx], :].unsqueeze(0)
|
| 333 |
+
|
| 334 |
+
feature_org_h, feature_org_w = spatial_shapes[img_idx]
|
| 335 |
+
feature = feature.reshape(1, feature_org_h, feature_org_w, -1)
|
| 336 |
+
feature = self.pixel_unshuffle(feature)
|
| 337 |
+
|
| 338 |
+
# project the image representation
|
| 339 |
+
img_embedding = self.multi_modal_projector(feature)
|
| 340 |
+
|
| 341 |
+
# flatten here to handle variable length in naflex
|
| 342 |
+
img_embedding = img_embedding.reshape(-1, img_embedding.size(-1))
|
| 343 |
+
image_features.append(img_embedding)
|
| 344 |
+
|
| 345 |
+
return image_features
|
| 346 |
+
|
| 347 |
+
def get_placeholder_mask(
|
| 348 |
+
self,
|
| 349 |
+
input_ids: torch.LongTensor | None,
|
| 350 |
+
inputs_embeds: torch.FloatTensor,
|
| 351 |
+
image_features: torch.FloatTensor,
|
| 352 |
+
):
|
| 353 |
+
"""
|
| 354 |
+
Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
| 355 |
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
| 356 |
+
"""
|
| 357 |
+
if input_ids is None:
|
| 358 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
| 359 |
+
torch.tensor(
|
| 360 |
+
self.config.image_token_id,
|
| 361 |
+
dtype=torch.long,
|
| 362 |
+
device=inputs_embeds.device,
|
| 363 |
+
)
|
| 364 |
+
)
|
| 365 |
+
special_image_mask = special_image_mask.all(-1)
|
| 366 |
+
else:
|
| 367 |
+
special_image_mask = input_ids == self.config.image_token_id
|
| 368 |
+
n_image_tokens = special_image_mask.sum()
|
| 369 |
+
special_image_mask = (
|
| 370 |
+
special_image_mask.unsqueeze(-1)
|
| 371 |
+
.expand_as(inputs_embeds)
|
| 372 |
+
.to(inputs_embeds.device)
|
| 373 |
+
)
|
| 374 |
+
n_image_features = image_features.shape[0]
|
| 375 |
+
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 376 |
+
raise ValueError(
|
| 377 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
| 378 |
+
)
|
| 379 |
+
return special_image_mask
|
| 380 |
+
|
| 381 |
+
@can_return_tuple
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
input_ids: torch.LongTensor = None,
|
| 385 |
+
attention_mask: torch.Tensor | None = None,
|
| 386 |
+
position_ids: torch.LongTensor | None = None,
|
| 387 |
+
pixel_values: torch.FloatTensor = None,
|
| 388 |
+
spatial_shapes: torch.Tensor = None,
|
| 389 |
+
pixel_attention_mask: torch.Tensor = None,
|
| 390 |
+
past_key_values: Cache | None = None,
|
| 391 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
| 392 |
+
use_cache: bool | None = None,
|
| 393 |
+
output_attentions: bool | None = None,
|
| 394 |
+
output_hidden_states: bool | None = None,
|
| 395 |
+
return_dict: bool | None = None,
|
| 396 |
+
cache_position: torch.LongTensor | None = None,
|
| 397 |
+
image_sizes: torch.Tensor = None,
|
| 398 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 399 |
+
) -> tuple | Lfm2VlModelOutputWithPast:
|
| 400 |
+
"""
|
| 401 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
| 402 |
+
The spatial shapes of the input images.
|
| 403 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
| 404 |
+
The pixel attention mask of the input images.
|
| 405 |
+
"""
|
| 406 |
+
output_attentions = (
|
| 407 |
+
output_attentions
|
| 408 |
+
if output_attentions is not None
|
| 409 |
+
else self.config.output_attentions
|
| 410 |
+
)
|
| 411 |
+
output_hidden_states = (
|
| 412 |
+
output_hidden_states
|
| 413 |
+
if output_hidden_states is not None
|
| 414 |
+
else self.config.output_hidden_states
|
| 415 |
+
)
|
| 416 |
+
return_dict = (
|
| 417 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 421 |
+
raise ValueError(
|
| 422 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
if inputs_embeds is None:
|
| 426 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 427 |
+
|
| 428 |
+
if pixel_values is not None:
|
| 429 |
+
image_features = self.get_image_features(
|
| 430 |
+
pixel_values=pixel_values,
|
| 431 |
+
spatial_shapes=spatial_shapes,
|
| 432 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 433 |
+
)
|
| 434 |
+
image_features = torch.cat(image_features, dim=0).to(
|
| 435 |
+
inputs_embeds.device, inputs_embeds.dtype
|
| 436 |
+
)
|
| 437 |
+
special_image_mask = self.get_placeholder_mask(
|
| 438 |
+
input_ids=input_ids,
|
| 439 |
+
inputs_embeds=inputs_embeds,
|
| 440 |
+
image_features=image_features,
|
| 441 |
+
)
|
| 442 |
+
inputs_embeds = inputs_embeds.masked_scatter(
|
| 443 |
+
special_image_mask, image_features
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
outputs = self.language_model(
|
| 447 |
+
attention_mask=attention_mask,
|
| 448 |
+
position_ids=position_ids,
|
| 449 |
+
past_key_values=past_key_values,
|
| 450 |
+
inputs_embeds=inputs_embeds,
|
| 451 |
+
use_cache=use_cache,
|
| 452 |
+
output_attentions=output_attentions,
|
| 453 |
+
output_hidden_states=output_hidden_states,
|
| 454 |
+
return_dict=True,
|
| 455 |
+
cache_position=cache_position,
|
| 456 |
+
**kwargs,
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
return Lfm2VlModelOutputWithPast(
|
| 460 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 461 |
+
past_key_values=outputs.past_key_values,
|
| 462 |
+
hidden_states=outputs.hidden_states,
|
| 463 |
+
attentions=outputs.attentions,
|
| 464 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
| 469 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 470 |
+
|
| 471 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 472 |
+
super().__init__(config)
|
| 473 |
+
self.model = Lfm2VlModel(config)
|
| 474 |
+
self.lm_head = nn.Linear(
|
| 475 |
+
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
|
| 476 |
+
)
|
| 477 |
+
self.post_init()
|
| 478 |
+
|
| 479 |
+
def _supports_default_dynamic_cache(self):
|
| 480 |
+
return False
|
| 481 |
+
|
| 482 |
+
def get_input_embeddings(self):
|
| 483 |
+
return self.model.get_input_embeddings()
|
| 484 |
+
|
| 485 |
+
def set_input_embeddings(self, value):
|
| 486 |
+
self.model.set_input_embeddings(value)
|
| 487 |
+
|
| 488 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 489 |
+
return self.lm_head
|
| 490 |
+
|
| 491 |
+
def set_decoder(self, decoder):
|
| 492 |
+
self.model.set_decoder(decoder)
|
| 493 |
+
|
| 494 |
+
def get_decoder(self):
|
| 495 |
+
return self.model.get_decoder()
|
| 496 |
+
|
| 497 |
+
def get_image_features(
|
| 498 |
+
self,
|
| 499 |
+
pixel_values: torch.FloatTensor,
|
| 500 |
+
spatial_shapes: torch.Tensor,
|
| 501 |
+
pixel_attention_mask: torch.Tensor,
|
| 502 |
+
**kwargs,
|
| 503 |
+
):
|
| 504 |
+
return self.model.get_image_features(
|
| 505 |
+
pixel_values=pixel_values,
|
| 506 |
+
spatial_shapes=spatial_shapes,
|
| 507 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 508 |
+
**kwargs,
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
@property
|
| 512 |
+
def language_model(self):
|
| 513 |
+
return self.model.language_model
|
| 514 |
+
|
| 515 |
+
@property
|
| 516 |
+
def vision_tower(self):
|
| 517 |
+
return self.model.vision_tower
|
| 518 |
+
|
| 519 |
+
@property
|
| 520 |
+
def multi_modal_projector(self):
|
| 521 |
+
return self.model.multi_modal_projector
|
| 522 |
+
|
| 523 |
+
@can_return_tuple
|
| 524 |
+
def forward(
|
| 525 |
+
self,
|
| 526 |
+
input_ids: torch.LongTensor = None,
|
| 527 |
+
pixel_values: torch.FloatTensor = None,
|
| 528 |
+
spatial_shapes: torch.Tensor = None,
|
| 529 |
+
pixel_attention_mask: torch.Tensor = None,
|
| 530 |
+
attention_mask: torch.Tensor | None = None,
|
| 531 |
+
position_ids: torch.LongTensor | None = None,
|
| 532 |
+
past_key_values: Cache | None = None,
|
| 533 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
| 534 |
+
labels: torch.LongTensor | None = None,
|
| 535 |
+
use_cache: bool | None = None,
|
| 536 |
+
output_attentions: bool | None = None,
|
| 537 |
+
output_hidden_states: bool | None = None,
|
| 538 |
+
return_dict: bool | None = None,
|
| 539 |
+
cache_position: torch.LongTensor | None = None,
|
| 540 |
+
logits_to_keep: int | torch.Tensor = 0,
|
| 541 |
+
image_sizes: torch.Tensor | None = None,
|
| 542 |
+
**kwargs,
|
| 543 |
+
) -> tuple | Lfm2VlCausalLMOutputWithPast:
|
| 544 |
+
r"""
|
| 545 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`, *optional*):
|
| 546 |
+
The input image tensors.
|
| 547 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
| 548 |
+
The spatial shapes of the input images.
|
| 549 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
| 550 |
+
The pixel attention mask of the input images.
|
| 551 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 552 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 553 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 554 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 555 |
+
|
| 556 |
+
Example:
|
| 557 |
+
|
| 558 |
+
```python
|
| 559 |
+
>>> from PIL import Image
|
| 560 |
+
>>> import requests
|
| 561 |
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 562 |
+
>>> from transformers.image_utils import load_image
|
| 563 |
+
|
| 564 |
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
| 565 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
| 566 |
+
... trust_remote_code=True
|
| 567 |
+
... )
|
| 568 |
+
>>> processor = AutoProcessor.from_pretrained(
|
| 569 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
| 570 |
+
... trust_remote_code=True
|
| 571 |
+
... )
|
| 572 |
+
|
| 573 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 574 |
+
>>> image = load_image(url)
|
| 575 |
+
|
| 576 |
+
>>> conversation = [
|
| 577 |
+
... {
|
| 578 |
+
... "role": "user",
|
| 579 |
+
... "content": [
|
| 580 |
+
... {"type": "image", "image": image},
|
| 581 |
+
... {"type": "text", "text": "What is in this image?"},
|
| 582 |
+
... ],
|
| 583 |
+
... },
|
| 584 |
+
... ]
|
| 585 |
+
|
| 586 |
+
>>> inputs = processor.apply_chat_template(
|
| 587 |
+
... conversation,
|
| 588 |
+
... add_generation_prompt=True,
|
| 589 |
+
... tokenize=True,
|
| 590 |
+
... return_dict=True,
|
| 591 |
+
... return_tensors="pt"
|
| 592 |
+
... )
|
| 593 |
+
|
| 594 |
+
>>> # Generate
|
| 595 |
+
>>> outputs = model.generate(**inputs, max_new_tokens=45)
|
| 596 |
+
>>> processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 597 |
+
'This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.'
|
| 598 |
+
```"""
|
| 599 |
+
output_attentions = (
|
| 600 |
+
output_attentions
|
| 601 |
+
if output_attentions is not None
|
| 602 |
+
else self.config.output_attentions
|
| 603 |
+
)
|
| 604 |
+
output_hidden_states = (
|
| 605 |
+
output_hidden_states
|
| 606 |
+
if output_hidden_states is not None
|
| 607 |
+
else self.config.output_hidden_states
|
| 608 |
+
)
|
| 609 |
+
return_dict = (
|
| 610 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
outputs = self.model(
|
| 614 |
+
input_ids=input_ids,
|
| 615 |
+
pixel_values=pixel_values,
|
| 616 |
+
spatial_shapes=spatial_shapes,
|
| 617 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 618 |
+
attention_mask=attention_mask,
|
| 619 |
+
position_ids=position_ids,
|
| 620 |
+
past_key_values=past_key_values,
|
| 621 |
+
inputs_embeds=inputs_embeds,
|
| 622 |
+
use_cache=use_cache,
|
| 623 |
+
output_attentions=output_attentions,
|
| 624 |
+
output_hidden_states=output_hidden_states,
|
| 625 |
+
return_dict=True,
|
| 626 |
+
cache_position=cache_position,
|
| 627 |
+
image_sizes=image_sizes,
|
| 628 |
+
**kwargs,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
hidden_states = outputs[0]
|
| 632 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 633 |
+
slice_indices = (
|
| 634 |
+
slice(-logits_to_keep, None)
|
| 635 |
+
if isinstance(logits_to_keep, int)
|
| 636 |
+
else logits_to_keep
|
| 637 |
+
)
|
| 638 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 639 |
+
|
| 640 |
+
loss = None
|
| 641 |
+
if labels is not None:
|
| 642 |
+
loss = self.loss_function(
|
| 643 |
+
logits=logits,
|
| 644 |
+
labels=labels,
|
| 645 |
+
vocab_size=self.config.text_config.vocab_size,
|
| 646 |
+
**kwargs,
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
return Lfm2VlCausalLMOutputWithPast(
|
| 650 |
+
loss=loss,
|
| 651 |
+
logits=logits,
|
| 652 |
+
past_key_values=outputs.past_key_values,
|
| 653 |
+
hidden_states=outputs.hidden_states,
|
| 654 |
+
attentions=outputs.attentions,
|
| 655 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
def prepare_inputs_for_generation(
|
| 659 |
+
self,
|
| 660 |
+
input_ids,
|
| 661 |
+
past_key_values=None,
|
| 662 |
+
inputs_embeds=None,
|
| 663 |
+
pixel_values=None,
|
| 664 |
+
attention_mask=None,
|
| 665 |
+
cache_position=None,
|
| 666 |
+
logits_to_keep=None,
|
| 667 |
+
**kwargs,
|
| 668 |
+
):
|
| 669 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 670 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 671 |
+
input_ids,
|
| 672 |
+
past_key_values=past_key_values,
|
| 673 |
+
inputs_embeds=inputs_embeds,
|
| 674 |
+
attention_mask=attention_mask,
|
| 675 |
+
cache_position=cache_position,
|
| 676 |
+
logits_to_keep=logits_to_keep,
|
| 677 |
+
**kwargs,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if cache_position[0] == 0:
|
| 681 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
| 682 |
+
# Otherwise we need pixel values to be passed to model
|
| 683 |
+
model_inputs["pixel_values"] = pixel_values
|
| 684 |
+
|
| 685 |
+
return model_inputs
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
__all__ = ["Lfm2VlForConditionalGeneration", "Lfm2VlModel", "Lfm2VlPreTrainedModel"]
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_lfm2_vl.Lfm2VlProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_convert_rgb": null,
|
| 6 |
+
"do_normalize": true,
|
| 7 |
+
"do_rescale": true,
|
| 8 |
+
"do_resize": false,
|
| 9 |
+
"image_mean": [
|
| 10 |
+
0.5,
|
| 11 |
+
0.5,
|
| 12 |
+
0.5
|
| 13 |
+
],
|
| 14 |
+
"image_processor_type": "Siglip2ImageProcessor",
|
| 15 |
+
"image_std": [
|
| 16 |
+
0.5,
|
| 17 |
+
0.5,
|
| 18 |
+
0.5
|
| 19 |
+
],
|
| 20 |
+
"input_data_format": "channels_last",
|
| 21 |
+
"max_num_patches": 1024,
|
| 22 |
+
"patch_size": 16,
|
| 23 |
+
"processor_class": "Lfm2VlProcessor",
|
| 24 |
+
"resample": 2,
|
| 25 |
+
"rescale_factor": 0.00392156862745098,
|
| 26 |
+
"return_tensors": "pt"
|
| 27 |
+
}
|
processing_lfm2_vl.py
ADDED
|
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Union
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 6 |
+
from transformers.image_utils import ImageInput, make_nested_list_of_images
|
| 7 |
+
from transformers.image_transforms import to_pil_image
|
| 8 |
+
from transformers.processing_utils import (
|
| 9 |
+
ImagesKwargs,
|
| 10 |
+
ProcessingKwargs,
|
| 11 |
+
ProcessorMixin,
|
| 12 |
+
Unpack,
|
| 13 |
+
)
|
| 14 |
+
from transformers.tokenization_utils_base import BatchEncoding, TextInput
|
| 15 |
+
from transformers.utils import logging
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# resize adapted from qwen2.5
|
| 21 |
+
# https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
|
| 22 |
+
def round_by_factor(number: float, factor: int) -> int:
|
| 23 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 24 |
+
return round(number / factor) * factor
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def ceil_by_factor(number: float, factor: int) -> int:
|
| 28 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 29 |
+
return math.ceil(number / factor) * factor
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def floor_by_factor(number: float, factor: int) -> int:
|
| 33 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 34 |
+
return math.floor(number / factor) * factor
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def find_closest_aspect_ratio(
|
| 38 |
+
aspect_ratio: float,
|
| 39 |
+
target_ratios: list[tuple[int, int]],
|
| 40 |
+
width: int,
|
| 41 |
+
height: int,
|
| 42 |
+
image_size: int,
|
| 43 |
+
) -> tuple[int, int]:
|
| 44 |
+
"""Find the closest aspect ratio from target_ratios to match the input aspect ratio.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
aspect_ratio: The aspect ratio to match (width/height).
|
| 48 |
+
target_ratios: List of possible aspect ratios as tuples of (width, height) integers.
|
| 49 |
+
width: Original image width in pixels.
|
| 50 |
+
height: Original image height in pixels.
|
| 51 |
+
image_size: Base size for calculating target area.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
tuple[int, int]: The best matching ratio as (width, height) integers.
|
| 55 |
+
"""
|
| 56 |
+
best_ratio_diff = float("inf")
|
| 57 |
+
best_ratio = (1, 1)
|
| 58 |
+
area = width * height
|
| 59 |
+
|
| 60 |
+
for ratio in target_ratios:
|
| 61 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 62 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 63 |
+
|
| 64 |
+
# update best ratio if we found a closer match
|
| 65 |
+
if ratio_diff < best_ratio_diff:
|
| 66 |
+
best_ratio_diff = ratio_diff
|
| 67 |
+
best_ratio = ratio
|
| 68 |
+
# if equally close, prefer the ratio that better matches the original image area
|
| 69 |
+
elif ratio_diff == best_ratio_diff:
|
| 70 |
+
target_area = image_size * image_size * ratio[0] * ratio[1]
|
| 71 |
+
if area > 0.5 * target_area:
|
| 72 |
+
best_ratio = ratio
|
| 73 |
+
|
| 74 |
+
return best_ratio
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class Lfm2VlImagesKwargs(ImagesKwargs, total=False):
|
| 78 |
+
return_row_col_info: bool | None
|
| 79 |
+
max_image_size: dict[str, int] | None
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Lfm2VlProcessorKwargs(ProcessingKwargs, total=False):
|
| 83 |
+
images_kwargs: Lfm2VlImagesKwargs
|
| 84 |
+
|
| 85 |
+
_defaults = {
|
| 86 |
+
"text_kwargs": {
|
| 87 |
+
"add_special_tokens": False,
|
| 88 |
+
"padding": False,
|
| 89 |
+
"is_split_into_words": False,
|
| 90 |
+
},
|
| 91 |
+
"images_kwargs": {
|
| 92 |
+
"do_resize": False,
|
| 93 |
+
},
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class Lfm2VlProcessor(ProcessorMixin):
|
| 98 |
+
r"""
|
| 99 |
+
Constructs a Lfm2Vl processor which wraps a Lfm2Tokenizer tokenizer and Lfm2Vl image processor into a single processor.
|
| 100 |
+
|
| 101 |
+
[`Lfm2VlProcessor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`Lfm2Tokenizer`].
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
image_processor (`Siglip2ImageProcessor`):
|
| 105 |
+
An instance of [`Siglip2ImageProcessor`]. The image processor is a required input.
|
| 106 |
+
tokenizer (`PreTrainedTokenizerBase`):
|
| 107 |
+
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
attributes = ["image_processor", "tokenizer"]
|
| 111 |
+
image_processor_class = "Siglip2ImageProcessor"
|
| 112 |
+
tokenizer_class = "AutoTokenizer"
|
| 113 |
+
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
image_processor,
|
| 117 |
+
tokenizer,
|
| 118 |
+
chat_template: str,
|
| 119 |
+
use_image_special_tokens: bool,
|
| 120 |
+
downsample_factor: int,
|
| 121 |
+
do_image_splitting: bool,
|
| 122 |
+
min_tiles: int,
|
| 123 |
+
max_tiles: int,
|
| 124 |
+
use_thumbnail: bool,
|
| 125 |
+
min_image_tokens: int,
|
| 126 |
+
max_image_tokens: int,
|
| 127 |
+
encoder_patch_size: int,
|
| 128 |
+
tile_size: int,
|
| 129 |
+
max_pixels_tolerance: float,
|
| 130 |
+
max_num_patches: int,
|
| 131 |
+
auto_map: dict[str, str] = None,
|
| 132 |
+
**kwargs,
|
| 133 |
+
):
|
| 134 |
+
self.image_token = getattr(tokenizer, "image_token", "<image>")
|
| 135 |
+
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
| 136 |
+
self.use_image_special_tokens = use_image_special_tokens
|
| 137 |
+
self.image_start_token = getattr(
|
| 138 |
+
tokenizer, "image_start_token", "<|image_start|>"
|
| 139 |
+
)
|
| 140 |
+
self.image_end_token = getattr(tokenizer, "image_end_token", "<|image_end|>")
|
| 141 |
+
self.image_thumbnail_token = getattr(
|
| 142 |
+
tokenizer, "image_thumbnail", "<|img_thumbnail|>"
|
| 143 |
+
)
|
| 144 |
+
self.downsample_factor = downsample_factor
|
| 145 |
+
self.do_image_splitting = do_image_splitting
|
| 146 |
+
self.min_tiles = min_tiles
|
| 147 |
+
self.max_tiles = max_tiles
|
| 148 |
+
self.use_thumbnail = use_thumbnail
|
| 149 |
+
self.min_image_tokens = min_image_tokens
|
| 150 |
+
self.max_image_tokens = max_image_tokens
|
| 151 |
+
self.encoder_patch_size = encoder_patch_size
|
| 152 |
+
self.tile_size = tile_size
|
| 153 |
+
self.max_pixels_tolerance = max_pixels_tolerance
|
| 154 |
+
self.chat_template = chat_template
|
| 155 |
+
self.auto_map = auto_map
|
| 156 |
+
super().__init__(
|
| 157 |
+
image_processor, tokenizer, chat_template=chat_template, **kwargs
|
| 158 |
+
)
|
| 159 |
+
self.max_num_patches = max_num_patches
|
| 160 |
+
self.image_processor.max_num_patches = max_num_patches
|
| 161 |
+
|
| 162 |
+
def _high_res_preprocessor(
|
| 163 |
+
self,
|
| 164 |
+
image: Image.Image,
|
| 165 |
+
min_tiles,
|
| 166 |
+
max_tiles,
|
| 167 |
+
tile_size,
|
| 168 |
+
) -> tuple[list[Image.Image], int, int, int]:
|
| 169 |
+
"""Process a high resolution image into patches.
|
| 170 |
+
This method splits a high resolution image into a grid of smaller patches while trying to maintain
|
| 171 |
+
the original aspect ratio. It finds the optimal grid configuration within the specified tile constraints.
|
| 172 |
+
"""
|
| 173 |
+
orig_width, orig_height = image.size
|
| 174 |
+
aspect_ratio = orig_width / orig_height
|
| 175 |
+
|
| 176 |
+
# generate valid patch grid configurations (width, height)
|
| 177 |
+
target_ratios = [
|
| 178 |
+
(w, h)
|
| 179 |
+
for n in range(min_tiles, max_tiles + 1)
|
| 180 |
+
for w in range(1, n + 1)
|
| 181 |
+
for h in range(1, n + 1)
|
| 182 |
+
if min_tiles <= w * h <= max_tiles
|
| 183 |
+
]
|
| 184 |
+
target_ratios = sorted(set(target_ratios), key=lambda x: x[0] * x[1])
|
| 185 |
+
|
| 186 |
+
# default to 1x1 if no valid configurations found
|
| 187 |
+
if not target_ratios:
|
| 188 |
+
return [], 0, 0
|
| 189 |
+
|
| 190 |
+
# find best matching grid configuration
|
| 191 |
+
grid_width, grid_height = find_closest_aspect_ratio(
|
| 192 |
+
aspect_ratio, target_ratios, orig_width, orig_height, tile_size
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
target_width = tile_size * grid_width
|
| 196 |
+
target_height = tile_size * grid_height
|
| 197 |
+
total_patches = grid_width * grid_height
|
| 198 |
+
|
| 199 |
+
# resize and split image into patches
|
| 200 |
+
resized_img = image.resize((target_width, target_height))
|
| 201 |
+
patches = []
|
| 202 |
+
|
| 203 |
+
for i in range(total_patches):
|
| 204 |
+
# calculate patch coordinates
|
| 205 |
+
col = i % grid_width
|
| 206 |
+
row = i // grid_width
|
| 207 |
+
box = (
|
| 208 |
+
col * tile_size,
|
| 209 |
+
row * tile_size,
|
| 210 |
+
(col + 1) * tile_size,
|
| 211 |
+
(row + 1) * tile_size,
|
| 212 |
+
)
|
| 213 |
+
patch = resized_img.crop(box)
|
| 214 |
+
patches.append(patch)
|
| 215 |
+
|
| 216 |
+
num_rows = grid_height
|
| 217 |
+
num_columns = grid_width
|
| 218 |
+
|
| 219 |
+
return patches, num_rows, num_columns
|
| 220 |
+
|
| 221 |
+
def _smart_resize(
|
| 222 |
+
self,
|
| 223 |
+
image: Image.Image,
|
| 224 |
+
downsample_factor: int,
|
| 225 |
+
min_image_tokens: int,
|
| 226 |
+
max_image_tokens: int,
|
| 227 |
+
encoder_patch_size: int,
|
| 228 |
+
) -> Image.Image:
|
| 229 |
+
"""
|
| 230 |
+
Rescales the image so that the following conditions are met:
|
| 231 |
+
1. Both dimensions (height and width) are divisible by 'encoder_patch_size' * 'downsample_factor'.
|
| 232 |
+
This ensures no padding is needed in the downsampling step.
|
| 233 |
+
2. The total number of pixels is within the range ['smart_resize_min_pixels', 'smart_resize_max_pixels'].
|
| 234 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 235 |
+
"""
|
| 236 |
+
width, height = image.size
|
| 237 |
+
|
| 238 |
+
total_factor = encoder_patch_size * downsample_factor
|
| 239 |
+
smart_resize_min_pixels = (
|
| 240 |
+
min_image_tokens
|
| 241 |
+
* encoder_patch_size ** 2
|
| 242 |
+
* downsample_factor ** 2
|
| 243 |
+
)
|
| 244 |
+
smart_resize_max_pixels = (
|
| 245 |
+
max_image_tokens
|
| 246 |
+
* encoder_patch_size ** 2
|
| 247 |
+
* downsample_factor ** 2
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
h_bar = max(total_factor, round_by_factor(height, total_factor))
|
| 251 |
+
w_bar = max(total_factor, round_by_factor(width, total_factor))
|
| 252 |
+
|
| 253 |
+
if h_bar * w_bar > smart_resize_max_pixels:
|
| 254 |
+
beta = math.sqrt((height * width) / smart_resize_max_pixels)
|
| 255 |
+
h_bar = max(total_factor, floor_by_factor(height / beta, total_factor))
|
| 256 |
+
w_bar = max(total_factor, floor_by_factor(width / beta, total_factor))
|
| 257 |
+
elif h_bar * w_bar < smart_resize_min_pixels:
|
| 258 |
+
beta = math.sqrt(smart_resize_min_pixels / (height * width))
|
| 259 |
+
h_bar = ceil_by_factor(height * beta, total_factor)
|
| 260 |
+
w_bar = ceil_by_factor(width * beta, total_factor)
|
| 261 |
+
|
| 262 |
+
resized_img = image.resize((w_bar, h_bar))
|
| 263 |
+
return resized_img
|
| 264 |
+
|
| 265 |
+
def _get_tokens_num(self, image_height: int, image_width: int) -> int:
|
| 266 |
+
num_patches_height = image_height // self.encoder_patch_size
|
| 267 |
+
num_patches_width = image_width // self.encoder_patch_size
|
| 268 |
+
|
| 269 |
+
dwn_num_patches_height = math.ceil(num_patches_height / self.downsample_factor)
|
| 270 |
+
dwn_num_patches_width = math.ceil(num_patches_width / self.downsample_factor)
|
| 271 |
+
|
| 272 |
+
return dwn_num_patches_height * dwn_num_patches_width
|
| 273 |
+
|
| 274 |
+
def _is_img_too_large(
|
| 275 |
+
self,
|
| 276 |
+
image: Image.Image,
|
| 277 |
+
max_image_tokens: int,
|
| 278 |
+
encoder_patch_size: int,
|
| 279 |
+
max_pixels_tolerance: float,
|
| 280 |
+
) -> bool:
|
| 281 |
+
"""Check if the image is too large to be processed as one tile."""
|
| 282 |
+
width, height = image.size
|
| 283 |
+
|
| 284 |
+
h_bar = max(encoder_patch_size, round_by_factor(height, encoder_patch_size))
|
| 285 |
+
w_bar = max(encoder_patch_size, round_by_factor(width, encoder_patch_size))
|
| 286 |
+
return (
|
| 287 |
+
h_bar * w_bar
|
| 288 |
+
> max_image_tokens
|
| 289 |
+
* encoder_patch_size ** 2
|
| 290 |
+
* self.downsample_factor ** 2
|
| 291 |
+
* max_pixels_tolerance
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
def _resize_and_maybe_split(
|
| 295 |
+
self,
|
| 296 |
+
image: ImageInput,
|
| 297 |
+
downsample_factor: int,
|
| 298 |
+
min_tiles: int,
|
| 299 |
+
max_tiles: int,
|
| 300 |
+
use_thumbnail: bool,
|
| 301 |
+
min_image_tokens: int,
|
| 302 |
+
max_image_tokens: int,
|
| 303 |
+
encoder_patch_size: int,
|
| 304 |
+
tile_size: int,
|
| 305 |
+
max_pixels_tolerance: float,
|
| 306 |
+
) -> tuple[list[Image.Image], int, int, int, int]:
|
| 307 |
+
"""Apply smart resize and maybe split the image into tiles if image too large.
|
| 308 |
+
Return:
|
| 309 |
+
image_tiles: ImageInput
|
| 310 |
+
num_tokens_per_tile: int
|
| 311 |
+
num_rows: int
|
| 312 |
+
num_cols: int
|
| 313 |
+
num_thumbnail_tokens: int
|
| 314 |
+
"""
|
| 315 |
+
image = to_pil_image(image)
|
| 316 |
+
do_image_splitting = not min_tiles == max_tiles == 1
|
| 317 |
+
if (
|
| 318 |
+
self._is_img_too_large(
|
| 319 |
+
image,
|
| 320 |
+
max_image_tokens,
|
| 321 |
+
encoder_patch_size,
|
| 322 |
+
max_pixels_tolerance,
|
| 323 |
+
)
|
| 324 |
+
and do_image_splitting
|
| 325 |
+
):
|
| 326 |
+
image_tiles, num_rows, num_cols = self._high_res_preprocessor(
|
| 327 |
+
image, min_tiles, max_tiles, tile_size
|
| 328 |
+
)
|
| 329 |
+
if len(image_tiles) > 1:
|
| 330 |
+
num_thumbnail_tokens = 0
|
| 331 |
+
if use_thumbnail:
|
| 332 |
+
thumbnail_image = self._smart_resize(
|
| 333 |
+
image,
|
| 334 |
+
downsample_factor,
|
| 335 |
+
min_image_tokens,
|
| 336 |
+
max_image_tokens,
|
| 337 |
+
encoder_patch_size,
|
| 338 |
+
)
|
| 339 |
+
num_thumbnail_tokens = self._get_tokens_num(
|
| 340 |
+
thumbnail_image.height, thumbnail_image.width
|
| 341 |
+
)
|
| 342 |
+
image_tiles.append(thumbnail_image)
|
| 343 |
+
|
| 344 |
+
return (
|
| 345 |
+
image_tiles,
|
| 346 |
+
self._get_tokens_num(tile_size, tile_size),
|
| 347 |
+
num_rows,
|
| 348 |
+
num_cols,
|
| 349 |
+
num_thumbnail_tokens,
|
| 350 |
+
)
|
| 351 |
+
else:
|
| 352 |
+
image = self._smart_resize(
|
| 353 |
+
image,
|
| 354 |
+
downsample_factor,
|
| 355 |
+
min_image_tokens,
|
| 356 |
+
max_image_tokens,
|
| 357 |
+
encoder_patch_size,
|
| 358 |
+
)
|
| 359 |
+
return [image], self._get_tokens_num(image.height, image.width), 1, 1, 0
|
| 360 |
+
|
| 361 |
+
def process_vision(
|
| 362 |
+
self,
|
| 363 |
+
text: list[str],
|
| 364 |
+
images: list[list[ImageInput]],
|
| 365 |
+
use_image_special_tokens: bool,
|
| 366 |
+
downsample_factor: int,
|
| 367 |
+
min_tiles: int,
|
| 368 |
+
max_tiles: int,
|
| 369 |
+
use_thumbnail: bool,
|
| 370 |
+
min_image_tokens: int,
|
| 371 |
+
max_image_tokens: int,
|
| 372 |
+
encoder_patch_size: int,
|
| 373 |
+
tile_size: int,
|
| 374 |
+
max_pixels_tolerance: float,
|
| 375 |
+
output_kwargs: dict,
|
| 376 |
+
):
|
| 377 |
+
if text is not None:
|
| 378 |
+
n_images_in_text = [sample.count(self.image_token) for sample in text]
|
| 379 |
+
|
| 380 |
+
n_images_in_images = [len(sublist) for sublist in images]
|
| 381 |
+
|
| 382 |
+
if n_images_in_images != n_images_in_text:
|
| 383 |
+
raise ValueError(
|
| 384 |
+
f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
prompt_strings = []
|
| 388 |
+
image_inputs = []
|
| 389 |
+
|
| 390 |
+
for sample_text, sample_images in zip(text, images, strict=False):
|
| 391 |
+
split_sample = sample_text.split(self.image_token)
|
| 392 |
+
sample_tiles = []
|
| 393 |
+
sample_text_with_image_tokens = ""
|
| 394 |
+
for i, image in enumerate(sample_images):
|
| 395 |
+
sample_text_with_image_tokens += split_sample[i]
|
| 396 |
+
if use_image_special_tokens:
|
| 397 |
+
sample_text_with_image_tokens += self.image_start_token
|
| 398 |
+
(
|
| 399 |
+
image_tiles,
|
| 400 |
+
num_tokens_per_tile,
|
| 401 |
+
num_rows,
|
| 402 |
+
num_cols,
|
| 403 |
+
num_thumbnail_tokens,
|
| 404 |
+
) = self._resize_and_maybe_split(
|
| 405 |
+
image,
|
| 406 |
+
downsample_factor,
|
| 407 |
+
min_tiles,
|
| 408 |
+
max_tiles,
|
| 409 |
+
use_thumbnail,
|
| 410 |
+
min_image_tokens,
|
| 411 |
+
max_image_tokens,
|
| 412 |
+
encoder_patch_size,
|
| 413 |
+
tile_size,
|
| 414 |
+
max_pixels_tolerance,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
if len(image_tiles) > 1:
|
| 418 |
+
for row in range(num_rows):
|
| 419 |
+
for col in range(num_cols):
|
| 420 |
+
if use_image_special_tokens:
|
| 421 |
+
sample_text_with_image_tokens += (
|
| 422 |
+
f"<|img_row_{row + 1}_col_{col + 1}|>"
|
| 423 |
+
)
|
| 424 |
+
sample_text_with_image_tokens += (
|
| 425 |
+
self.image_token * num_tokens_per_tile
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
if num_thumbnail_tokens > 0:
|
| 429 |
+
if use_image_special_tokens:
|
| 430 |
+
sample_text_with_image_tokens += self.image_thumbnail_token
|
| 431 |
+
sample_text_with_image_tokens += (
|
| 432 |
+
self.image_token * num_thumbnail_tokens
|
| 433 |
+
)
|
| 434 |
+
else:
|
| 435 |
+
sample_text_with_image_tokens += (
|
| 436 |
+
self.image_token * num_tokens_per_tile
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
if use_image_special_tokens:
|
| 440 |
+
sample_text_with_image_tokens += self.image_end_token
|
| 441 |
+
|
| 442 |
+
sample_text_with_image_tokens += split_sample[i + 1]
|
| 443 |
+
sample_tiles.extend(image_tiles)
|
| 444 |
+
|
| 445 |
+
prompt_strings.append(sample_text_with_image_tokens)
|
| 446 |
+
image_inputs.append(sample_tiles)
|
| 447 |
+
|
| 448 |
+
image_inputs = self.image_processor(
|
| 449 |
+
image_inputs, **output_kwargs["images_kwargs"]
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if text is None:
|
| 453 |
+
return None, image_inputs
|
| 454 |
+
|
| 455 |
+
return prompt_strings, image_inputs
|
| 456 |
+
|
| 457 |
+
def __call__(
|
| 458 |
+
self,
|
| 459 |
+
images: ImageInput | list[ImageInput] | list[list[ImageInput]] = None,
|
| 460 |
+
text: Union[TextInput, "PreTokenizedInput", list[TextInput], list["PreTokenizedInput"]] = None,
|
| 461 |
+
use_image_special_tokens: bool | None = None,
|
| 462 |
+
downsample_factor: int | None = None,
|
| 463 |
+
min_image_tokens: int | None = None,
|
| 464 |
+
max_image_tokens: int | None = None,
|
| 465 |
+
do_image_splitting: bool | None = None,
|
| 466 |
+
min_tiles: int | None = None,
|
| 467 |
+
max_tiles: int | None = None,
|
| 468 |
+
use_thumbnail: bool | None = None,
|
| 469 |
+
encoder_patch_size: int | None = None,
|
| 470 |
+
tile_size: int | None = None,
|
| 471 |
+
max_pixels_tolerance: float | None = None,
|
| 472 |
+
**kwargs: Unpack[Lfm2VlProcessorKwargs],
|
| 473 |
+
) -> BatchEncoding:
|
| 474 |
+
"""
|
| 475 |
+
Processes the input prompts and returns a BatchFeature.
|
| 476 |
+
|
| 477 |
+
Example:
|
| 478 |
+
|
| 479 |
+
```python
|
| 480 |
+
>>> import requests
|
| 481 |
+
>>> from transformers import AutoProcessor
|
| 482 |
+
>>> from transformers.image_utils import load_image
|
| 483 |
+
>>> processor = AutoProcessor.from_pretrained("LiquidAI/LFM2-VL-1.6B", trust_remote_code=True)
|
| 484 |
+
|
| 485 |
+
>>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
| 486 |
+
>>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
|
| 487 |
+
|
| 488 |
+
>>> image1, image2 = load_image(url1), load_image(url2)
|
| 489 |
+
>>> images = [image1, image2]
|
| 490 |
+
|
| 491 |
+
>>> conversation = [
|
| 492 |
+
... {
|
| 493 |
+
... "role": "user",
|
| 494 |
+
... "content": [
|
| 495 |
+
... {"type": "image", "url": image1},
|
| 496 |
+
... {"type": "image", "url": image2},
|
| 497 |
+
... {"type": "text", "text": "Compare the two images."},
|
| 498 |
+
... ],
|
| 499 |
+
... },
|
| 500 |
+
... ]
|
| 501 |
+
>>> chat_inputs = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
| 502 |
+
>>> outputs = processor(images=images, text=chat_inputs, return_tensors="pt")
|
| 503 |
+
>>> input_ids = outputs.input_ids
|
| 504 |
+
>>> input_tokens = processor.tokenizer.batch_decode(input_ids)
|
| 505 |
+
>>> print(input_tokens)
|
| 506 |
+
'['user\nCompare the two images.\nassistant\n']'
|
| 507 |
+
```
|
| 508 |
+
|
| 509 |
+
Args:
|
| 510 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`, *optional*):
|
| 511 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 512 |
+
tensor. If is of type `list[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
|
| 513 |
+
text (`TextInput`, *optional*):
|
| 514 |
+
The sequence or batch of sequences to be encoded.
|
| 515 |
+
Wherever an image token, `<image>` is encountered it is expanded to a proper sequence of image tokens.
|
| 516 |
+
return_tensors (`str | TensorType`, *optional*):
|
| 517 |
+
If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
|
| 518 |
+
information.
|
| 519 |
+
"""
|
| 520 |
+
use_image_special_tokens = (
|
| 521 |
+
use_image_special_tokens
|
| 522 |
+
if use_image_special_tokens is not None
|
| 523 |
+
else self.use_image_special_tokens
|
| 524 |
+
)
|
| 525 |
+
downsample_factor = (
|
| 526 |
+
downsample_factor
|
| 527 |
+
if downsample_factor is not None
|
| 528 |
+
else self.downsample_factor
|
| 529 |
+
)
|
| 530 |
+
do_image_splitting = (
|
| 531 |
+
do_image_splitting
|
| 532 |
+
if do_image_splitting is not None
|
| 533 |
+
else self.do_image_splitting
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
min_tiles = min_tiles if min_tiles is not None else self.min_tiles
|
| 537 |
+
max_tiles = max_tiles if max_tiles is not None else self.max_tiles
|
| 538 |
+
|
| 539 |
+
if not do_image_splitting:
|
| 540 |
+
min_tiles = 1
|
| 541 |
+
max_tiles = 1
|
| 542 |
+
logger.debug(
|
| 543 |
+
"Image splitting is disabled, setting min_tiles and max_tiles to 1. Set do_image_splitting=True to enable splitting."
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
if do_image_splitting and min_tiles > max_tiles:
|
| 547 |
+
raise ValueError("min_tiles must be less than or equal to max_tiles")
|
| 548 |
+
|
| 549 |
+
use_thumbnail = (
|
| 550 |
+
use_thumbnail if use_thumbnail is not None else self.use_thumbnail
|
| 551 |
+
)
|
| 552 |
+
min_image_tokens = (
|
| 553 |
+
min_image_tokens if min_image_tokens is not None else self.min_image_tokens
|
| 554 |
+
)
|
| 555 |
+
max_image_tokens = (
|
| 556 |
+
max_image_tokens if max_image_tokens is not None else self.max_image_tokens
|
| 557 |
+
)
|
| 558 |
+
encoder_patch_size = (
|
| 559 |
+
encoder_patch_size
|
| 560 |
+
if encoder_patch_size is not None
|
| 561 |
+
else self.encoder_patch_size
|
| 562 |
+
)
|
| 563 |
+
tile_size = tile_size if tile_size is not None else self.tile_size
|
| 564 |
+
max_pixels_tolerance = (
|
| 565 |
+
max_pixels_tolerance
|
| 566 |
+
if max_pixels_tolerance is not None
|
| 567 |
+
else self.max_pixels_tolerance
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
if text is None and images is None:
|
| 571 |
+
raise ValueError("You must provide one of `text` or `images`.")
|
| 572 |
+
|
| 573 |
+
output_kwargs = self._merge_kwargs(
|
| 574 |
+
Lfm2VlProcessorKwargs,
|
| 575 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 576 |
+
**kwargs,
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
if text is not None:
|
| 580 |
+
if isinstance(text, str):
|
| 581 |
+
text = [text]
|
| 582 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 583 |
+
raise ValueError(
|
| 584 |
+
"Invalid input text. Please provide a string, or a list of strings"
|
| 585 |
+
)
|
| 586 |
+
n_images_in_text = sum([sample.count(self.image_token) for sample in text])
|
| 587 |
+
if n_images_in_text > 0 and (images is None):
|
| 588 |
+
raise ValueError(
|
| 589 |
+
f"We detected {n_images_in_text} tokens in the text but no images were passed"
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
inputs = {}
|
| 593 |
+
|
| 594 |
+
if images is not None:
|
| 595 |
+
images = make_nested_list_of_images(images)
|
| 596 |
+
text, vision_inputs = self.process_vision(
|
| 597 |
+
text,
|
| 598 |
+
images,
|
| 599 |
+
use_image_special_tokens,
|
| 600 |
+
downsample_factor,
|
| 601 |
+
min_tiles,
|
| 602 |
+
max_tiles,
|
| 603 |
+
use_thumbnail,
|
| 604 |
+
min_image_tokens,
|
| 605 |
+
max_image_tokens,
|
| 606 |
+
encoder_patch_size,
|
| 607 |
+
tile_size,
|
| 608 |
+
max_pixels_tolerance,
|
| 609 |
+
output_kwargs,
|
| 610 |
+
)
|
| 611 |
+
inputs.update(vision_inputs)
|
| 612 |
+
|
| 613 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
| 614 |
+
|
| 615 |
+
if text is not None:
|
| 616 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 617 |
+
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
|
| 618 |
+
inputs.update(text_inputs)
|
| 619 |
+
|
| 620 |
+
return BatchFeature(inputs, tensor_type=return_tensors)
|
| 621 |
+
|
| 622 |
+
def batch_decode(self, *args, **kwargs):
|
| 623 |
+
"""
|
| 624 |
+
This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 625 |
+
refer to the docstring of this method for more information.
|
| 626 |
+
"""
|
| 627 |
+
batched_decode_output = self.tokenizer.batch_decode(*args, **kwargs)
|
| 628 |
+
return batched_decode_output
|
| 629 |
+
|
| 630 |
+
def decode(self, *args, **kwargs):
|
| 631 |
+
"""
|
| 632 |
+
This method forwards all its arguments to LFM2Tokeniser's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 633 |
+
the docstring of this method for more information.
|
| 634 |
+
"""
|
| 635 |
+
decode_output = self.tokenizer.decode(*args, **kwargs)
|
| 636 |
+
return decode_output
|
| 637 |
+
|
| 638 |
+
@property
|
| 639 |
+
def model_input_names(self):
|
| 640 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 641 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 642 |
+
return list(dict.fromkeys(image_processor_input_names + tokenizer_input_names))
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
__all__ = ["Lfm2VlProcessor"]
|
processor_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_lfm2_vl.Lfm2VlProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_image_splitting": true,
|
| 6 |
+
"downsample_factor": 2,
|
| 7 |
+
"encoder_patch_size": 16,
|
| 8 |
+
"max_image_tokens": 256,
|
| 9 |
+
"max_num_patches": 1024,
|
| 10 |
+
"max_pixels_tolerance": 1.5,
|
| 11 |
+
"max_tiles": 10,
|
| 12 |
+
"min_image_tokens": 64,
|
| 13 |
+
"min_tiles": 2,
|
| 14 |
+
"processor_class": "Lfm2VlProcessor",
|
| 15 |
+
"tile_size": 512,
|
| 16 |
+
"use_image_special_tokens": true,
|
| 17 |
+
"use_thumbnail": true
|
| 18 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|im_end|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"image_end_token": "<|image_end|>",
|
| 17 |
+
"image_start_token": "<|image_start|>",
|
| 18 |
+
"image_thumbnail": "<|img_thumbnail|>",
|
| 19 |
+
"image_token": "<image>",
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "<|pad|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
}
|
| 27 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,4088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<|pad|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<|startoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<|endoftext|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<|fim_pre|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<|fim_mid|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<|fim_suf|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "<|im_start|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<|im_end|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "<|tool_list_start|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<|tool_list_end|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<|tool_call_start|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<|tool_call_end|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<|tool_response_start|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<|tool_response_end|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"16": {
|
| 118 |
+
"content": "<|reserved_6|>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": true
|
| 124 |
+
},
|
| 125 |
+
"17": {
|
| 126 |
+
"content": "<|reserved_7|>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": true
|
| 132 |
+
},
|
| 133 |
+
"18": {
|
| 134 |
+
"content": "<|reserved_8|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": true
|
| 140 |
+
},
|
| 141 |
+
"19": {
|
| 142 |
+
"content": "<|reserved_9|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": true
|
| 148 |
+
},
|
| 149 |
+
"20": {
|
| 150 |
+
"content": "<|reserved_10|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": true
|
| 156 |
+
},
|
| 157 |
+
"21": {
|
| 158 |
+
"content": "<|reserved_11|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": true
|
| 164 |
+
},
|
| 165 |
+
"22": {
|
| 166 |
+
"content": "<|reserved_12|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": true
|
| 172 |
+
},
|
| 173 |
+
"23": {
|
| 174 |
+
"content": "<|reserved_13|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": true
|
| 180 |
+
},
|
| 181 |
+
"24": {
|
| 182 |
+
"content": "<|reserved_14|>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
},
|
| 189 |
+
"25": {
|
| 190 |
+
"content": "<|reserved_15|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": true
|
| 196 |
+
},
|
| 197 |
+
"26": {
|
| 198 |
+
"content": "<|reserved_16|>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": true
|
| 204 |
+
},
|
| 205 |
+
"27": {
|
| 206 |
+
"content": "<|reserved_17|>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": true
|
| 212 |
+
},
|
| 213 |
+
"28": {
|
| 214 |
+
"content": "<|reserved_18|>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
},
|
| 221 |
+
"29": {
|
| 222 |
+
"content": "<|reserved_19|>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": true
|
| 228 |
+
},
|
| 229 |
+
"30": {
|
| 230 |
+
"content": "<|reserved_20|>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": true
|
| 236 |
+
},
|
| 237 |
+
"31": {
|
| 238 |
+
"content": "<|reserved_21|>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": true
|
| 244 |
+
},
|
| 245 |
+
"32": {
|
| 246 |
+
"content": "<|reserved_22|>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": true
|
| 252 |
+
},
|
| 253 |
+
"33": {
|
| 254 |
+
"content": "<|reserved_23|>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": true
|
| 260 |
+
},
|
| 261 |
+
"34": {
|
| 262 |
+
"content": "<|reserved_24|>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": true
|
| 268 |
+
},
|
| 269 |
+
"35": {
|
| 270 |
+
"content": "<|reserved_25|>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": true
|
| 276 |
+
},
|
| 277 |
+
"36": {
|
| 278 |
+
"content": "<|reserved_26|>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": true
|
| 284 |
+
},
|
| 285 |
+
"37": {
|
| 286 |
+
"content": "<|reserved_27|>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": true
|
| 292 |
+
},
|
| 293 |
+
"38": {
|
| 294 |
+
"content": "<|reserved_28|>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": true
|
| 300 |
+
},
|
| 301 |
+
"39": {
|
| 302 |
+
"content": "<|reserved_29|>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": true
|
| 308 |
+
},
|
| 309 |
+
"40": {
|
| 310 |
+
"content": "<|reserved_30|>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": true
|
| 316 |
+
},
|
| 317 |
+
"41": {
|
| 318 |
+
"content": "<|reserved_31|>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": true
|
| 324 |
+
},
|
| 325 |
+
"42": {
|
| 326 |
+
"content": "<|reserved_32|>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": true
|
| 332 |
+
},
|
| 333 |
+
"43": {
|
| 334 |
+
"content": "<|reserved_33|>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": true
|
| 340 |
+
},
|
| 341 |
+
"44": {
|
| 342 |
+
"content": "<|reserved_34|>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": true
|
| 348 |
+
},
|
| 349 |
+
"45": {
|
| 350 |
+
"content": "<|reserved_35|>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": true
|
| 356 |
+
},
|
| 357 |
+
"46": {
|
| 358 |
+
"content": "<|reserved_36|>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": true
|
| 364 |
+
},
|
| 365 |
+
"47": {
|
| 366 |
+
"content": "<|reserved_37|>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": true
|
| 372 |
+
},
|
| 373 |
+
"48": {
|
| 374 |
+
"content": "<|reserved_38|>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": true
|
| 380 |
+
},
|
| 381 |
+
"49": {
|
| 382 |
+
"content": "<|reserved_39|>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": true
|
| 388 |
+
},
|
| 389 |
+
"50": {
|
| 390 |
+
"content": "<|reserved_40|>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": true
|
| 396 |
+
},
|
| 397 |
+
"51": {
|
| 398 |
+
"content": "<|reserved_41|>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": true
|
| 404 |
+
},
|
| 405 |
+
"52": {
|
| 406 |
+
"content": "<|reserved_42|>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": true
|
| 412 |
+
},
|
| 413 |
+
"53": {
|
| 414 |
+
"content": "<|reserved_43|>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": true
|
| 420 |
+
},
|
| 421 |
+
"54": {
|
| 422 |
+
"content": "<|reserved_44|>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": true
|
| 428 |
+
},
|
| 429 |
+
"55": {
|
| 430 |
+
"content": "<|reserved_45|>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": true
|
| 436 |
+
},
|
| 437 |
+
"56": {
|
| 438 |
+
"content": "<|reserved_46|>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": true
|
| 444 |
+
},
|
| 445 |
+
"57": {
|
| 446 |
+
"content": "<|reserved_47|>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": true
|
| 452 |
+
},
|
| 453 |
+
"58": {
|
| 454 |
+
"content": "<|reserved_48|>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": true
|
| 460 |
+
},
|
| 461 |
+
"59": {
|
| 462 |
+
"content": "<|reserved_49|>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": true
|
| 468 |
+
},
|
| 469 |
+
"60": {
|
| 470 |
+
"content": "<|reserved_50|>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": true
|
| 476 |
+
},
|
| 477 |
+
"61": {
|
| 478 |
+
"content": "<|reserved_51|>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": true
|
| 484 |
+
},
|
| 485 |
+
"62": {
|
| 486 |
+
"content": "<|reserved_52|>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": true
|
| 492 |
+
},
|
| 493 |
+
"63": {
|
| 494 |
+
"content": "<|reserved_53|>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": true
|
| 500 |
+
},
|
| 501 |
+
"64": {
|
| 502 |
+
"content": "<|reserved_54|>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": true
|
| 508 |
+
},
|
| 509 |
+
"65": {
|
| 510 |
+
"content": "<|reserved_55|>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": true
|
| 516 |
+
},
|
| 517 |
+
"66": {
|
| 518 |
+
"content": "<|reserved_56|>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": true
|
| 524 |
+
},
|
| 525 |
+
"67": {
|
| 526 |
+
"content": "<|reserved_57|>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": true
|
| 532 |
+
},
|
| 533 |
+
"68": {
|
| 534 |
+
"content": "<|reserved_58|>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": true
|
| 540 |
+
},
|
| 541 |
+
"69": {
|
| 542 |
+
"content": "<|reserved_59|>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": true
|
| 548 |
+
},
|
| 549 |
+
"70": {
|
| 550 |
+
"content": "<|reserved_60|>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": true
|
| 556 |
+
},
|
| 557 |
+
"71": {
|
| 558 |
+
"content": "<|reserved_61|>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": true
|
| 564 |
+
},
|
| 565 |
+
"72": {
|
| 566 |
+
"content": "<|reserved_62|>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": true
|
| 572 |
+
},
|
| 573 |
+
"73": {
|
| 574 |
+
"content": "<|reserved_63|>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": true
|
| 580 |
+
},
|
| 581 |
+
"74": {
|
| 582 |
+
"content": "<|reserved_64|>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": true
|
| 588 |
+
},
|
| 589 |
+
"75": {
|
| 590 |
+
"content": "<|reserved_65|>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": true
|
| 596 |
+
},
|
| 597 |
+
"76": {
|
| 598 |
+
"content": "<|reserved_66|>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": true
|
| 604 |
+
},
|
| 605 |
+
"77": {
|
| 606 |
+
"content": "<|reserved_67|>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": true
|
| 612 |
+
},
|
| 613 |
+
"78": {
|
| 614 |
+
"content": "<|reserved_68|>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": true
|
| 620 |
+
},
|
| 621 |
+
"79": {
|
| 622 |
+
"content": "<|reserved_69|>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": true
|
| 628 |
+
},
|
| 629 |
+
"80": {
|
| 630 |
+
"content": "<|reserved_70|>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": true
|
| 636 |
+
},
|
| 637 |
+
"81": {
|
| 638 |
+
"content": "<|reserved_71|>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": true
|
| 644 |
+
},
|
| 645 |
+
"82": {
|
| 646 |
+
"content": "<|reserved_72|>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": true
|
| 652 |
+
},
|
| 653 |
+
"83": {
|
| 654 |
+
"content": "<|reserved_73|>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": true
|
| 660 |
+
},
|
| 661 |
+
"84": {
|
| 662 |
+
"content": "<|reserved_74|>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": true
|
| 668 |
+
},
|
| 669 |
+
"85": {
|
| 670 |
+
"content": "<|reserved_75|>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": true
|
| 676 |
+
},
|
| 677 |
+
"86": {
|
| 678 |
+
"content": "<|reserved_76|>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": true
|
| 684 |
+
},
|
| 685 |
+
"87": {
|
| 686 |
+
"content": "<|reserved_77|>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": true
|
| 692 |
+
},
|
| 693 |
+
"88": {
|
| 694 |
+
"content": "<|reserved_78|>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": true
|
| 700 |
+
},
|
| 701 |
+
"89": {
|
| 702 |
+
"content": "<|reserved_79|>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": true
|
| 708 |
+
},
|
| 709 |
+
"90": {
|
| 710 |
+
"content": "<|reserved_80|>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": true
|
| 716 |
+
},
|
| 717 |
+
"91": {
|
| 718 |
+
"content": "<|reserved_81|>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": true
|
| 724 |
+
},
|
| 725 |
+
"92": {
|
| 726 |
+
"content": "<|reserved_82|>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": true
|
| 732 |
+
},
|
| 733 |
+
"93": {
|
| 734 |
+
"content": "<|reserved_83|>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": true
|
| 740 |
+
},
|
| 741 |
+
"94": {
|
| 742 |
+
"content": "<|reserved_84|>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": true
|
| 748 |
+
},
|
| 749 |
+
"95": {
|
| 750 |
+
"content": "<|reserved_85|>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": true
|
| 756 |
+
},
|
| 757 |
+
"96": {
|
| 758 |
+
"content": "<|reserved_86|>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": true
|
| 764 |
+
},
|
| 765 |
+
"97": {
|
| 766 |
+
"content": "<|reserved_87|>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": true
|
| 772 |
+
},
|
| 773 |
+
"98": {
|
| 774 |
+
"content": "<|reserved_88|>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": true
|
| 780 |
+
},
|
| 781 |
+
"99": {
|
| 782 |
+
"content": "<|reserved_89|>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": true
|
| 788 |
+
},
|
| 789 |
+
"100": {
|
| 790 |
+
"content": "<|reserved_90|>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": true
|
| 796 |
+
},
|
| 797 |
+
"101": {
|
| 798 |
+
"content": "<|reserved_91|>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": true
|
| 804 |
+
},
|
| 805 |
+
"102": {
|
| 806 |
+
"content": "<|reserved_92|>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": true
|
| 812 |
+
},
|
| 813 |
+
"103": {
|
| 814 |
+
"content": "<|reserved_93|>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": true
|
| 820 |
+
},
|
| 821 |
+
"104": {
|
| 822 |
+
"content": "<|reserved_94|>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": true
|
| 828 |
+
},
|
| 829 |
+
"105": {
|
| 830 |
+
"content": "<|reserved_95|>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": true
|
| 836 |
+
},
|
| 837 |
+
"106": {
|
| 838 |
+
"content": "<|reserved_96|>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": true
|
| 844 |
+
},
|
| 845 |
+
"107": {
|
| 846 |
+
"content": "<|reserved_97|>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": true
|
| 852 |
+
},
|
| 853 |
+
"108": {
|
| 854 |
+
"content": "<|reserved_98|>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"109": {
|
| 862 |
+
"content": "<|reserved_99|>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"110": {
|
| 870 |
+
"content": "<|reserved_100|>",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": true
|
| 876 |
+
},
|
| 877 |
+
"111": {
|
| 878 |
+
"content": "<|reserved_101|>",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": true
|
| 884 |
+
},
|
| 885 |
+
"112": {
|
| 886 |
+
"content": "<|reserved_102|>",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": true
|
| 892 |
+
},
|
| 893 |
+
"113": {
|
| 894 |
+
"content": "<|reserved_103|>",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": true
|
| 900 |
+
},
|
| 901 |
+
"114": {
|
| 902 |
+
"content": "<|reserved_104|>",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": true
|
| 908 |
+
},
|
| 909 |
+
"115": {
|
| 910 |
+
"content": "<|reserved_105|>",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": true
|
| 916 |
+
},
|
| 917 |
+
"116": {
|
| 918 |
+
"content": "<|reserved_106|>",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": true
|
| 924 |
+
},
|
| 925 |
+
"117": {
|
| 926 |
+
"content": "<|reserved_107|>",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": true
|
| 932 |
+
},
|
| 933 |
+
"118": {
|
| 934 |
+
"content": "<|reserved_108|>",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": true
|
| 940 |
+
},
|
| 941 |
+
"119": {
|
| 942 |
+
"content": "<|reserved_109|>",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": true
|
| 948 |
+
},
|
| 949 |
+
"120": {
|
| 950 |
+
"content": "<|reserved_110|>",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": true
|
| 956 |
+
},
|
| 957 |
+
"121": {
|
| 958 |
+
"content": "<|reserved_111|>",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": true
|
| 964 |
+
},
|
| 965 |
+
"122": {
|
| 966 |
+
"content": "<|reserved_112|>",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": true
|
| 972 |
+
},
|
| 973 |
+
"123": {
|
| 974 |
+
"content": "<|reserved_113|>",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": true
|
| 980 |
+
},
|
| 981 |
+
"124": {
|
| 982 |
+
"content": "<|reserved_114|>",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": true
|
| 988 |
+
},
|
| 989 |
+
"125": {
|
| 990 |
+
"content": "<|reserved_115|>",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": true
|
| 996 |
+
},
|
| 997 |
+
"126": {
|
| 998 |
+
"content": "<|reserved_116|>",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": true
|
| 1004 |
+
},
|
| 1005 |
+
"127": {
|
| 1006 |
+
"content": "<|reserved_117|>",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": true
|
| 1012 |
+
},
|
| 1013 |
+
"128": {
|
| 1014 |
+
"content": "<|reserved_118|>",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": true
|
| 1020 |
+
},
|
| 1021 |
+
"129": {
|
| 1022 |
+
"content": "<|reserved_119|>",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": true
|
| 1028 |
+
},
|
| 1029 |
+
"130": {
|
| 1030 |
+
"content": "<|reserved_120|>",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": true
|
| 1036 |
+
},
|
| 1037 |
+
"131": {
|
| 1038 |
+
"content": "<|reserved_121|>",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": true
|
| 1044 |
+
},
|
| 1045 |
+
"132": {
|
| 1046 |
+
"content": "<|reserved_122|>",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": true
|
| 1052 |
+
},
|
| 1053 |
+
"133": {
|
| 1054 |
+
"content": "<|reserved_123|>",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": true
|
| 1060 |
+
},
|
| 1061 |
+
"134": {
|
| 1062 |
+
"content": "<|reserved_124|>",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": true
|
| 1068 |
+
},
|
| 1069 |
+
"135": {
|
| 1070 |
+
"content": "<|reserved_125|>",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": true
|
| 1076 |
+
},
|
| 1077 |
+
"136": {
|
| 1078 |
+
"content": "<|reserved_126|>",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": true
|
| 1084 |
+
},
|
| 1085 |
+
"137": {
|
| 1086 |
+
"content": "<|reserved_127|>",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": true
|
| 1092 |
+
},
|
| 1093 |
+
"138": {
|
| 1094 |
+
"content": "<|reserved_128|>",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": true
|
| 1100 |
+
},
|
| 1101 |
+
"139": {
|
| 1102 |
+
"content": "<|reserved_129|>",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": true
|
| 1108 |
+
},
|
| 1109 |
+
"140": {
|
| 1110 |
+
"content": "<|reserved_130|>",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": true
|
| 1116 |
+
},
|
| 1117 |
+
"141": {
|
| 1118 |
+
"content": "<|reserved_131|>",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": true
|
| 1124 |
+
},
|
| 1125 |
+
"142": {
|
| 1126 |
+
"content": "<|reserved_132|>",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": true
|
| 1132 |
+
},
|
| 1133 |
+
"143": {
|
| 1134 |
+
"content": "<|reserved_133|>",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": true
|
| 1140 |
+
},
|
| 1141 |
+
"144": {
|
| 1142 |
+
"content": "<|reserved_134|>",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": true
|
| 1148 |
+
},
|
| 1149 |
+
"145": {
|
| 1150 |
+
"content": "<|reserved_135|>",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": true
|
| 1156 |
+
},
|
| 1157 |
+
"146": {
|
| 1158 |
+
"content": "<|reserved_136|>",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": true
|
| 1164 |
+
},
|
| 1165 |
+
"147": {
|
| 1166 |
+
"content": "<|reserved_137|>",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": true
|
| 1172 |
+
},
|
| 1173 |
+
"148": {
|
| 1174 |
+
"content": "<|reserved_138|>",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": true
|
| 1180 |
+
},
|
| 1181 |
+
"149": {
|
| 1182 |
+
"content": "<|reserved_139|>",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": true
|
| 1188 |
+
},
|
| 1189 |
+
"150": {
|
| 1190 |
+
"content": "<|reserved_140|>",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": true
|
| 1196 |
+
},
|
| 1197 |
+
"151": {
|
| 1198 |
+
"content": "<|reserved_141|>",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": true
|
| 1204 |
+
},
|
| 1205 |
+
"152": {
|
| 1206 |
+
"content": "<|reserved_142|>",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": true
|
| 1212 |
+
},
|
| 1213 |
+
"153": {
|
| 1214 |
+
"content": "<|reserved_143|>",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": true
|
| 1220 |
+
},
|
| 1221 |
+
"154": {
|
| 1222 |
+
"content": "<|reserved_144|>",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": true
|
| 1228 |
+
},
|
| 1229 |
+
"155": {
|
| 1230 |
+
"content": "<|reserved_145|>",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": true
|
| 1236 |
+
},
|
| 1237 |
+
"156": {
|
| 1238 |
+
"content": "<|reserved_146|>",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": true
|
| 1244 |
+
},
|
| 1245 |
+
"157": {
|
| 1246 |
+
"content": "<|reserved_147|>",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": true
|
| 1252 |
+
},
|
| 1253 |
+
"158": {
|
| 1254 |
+
"content": "<|reserved_148|>",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": true
|
| 1260 |
+
},
|
| 1261 |
+
"159": {
|
| 1262 |
+
"content": "<|reserved_149|>",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": true
|
| 1268 |
+
},
|
| 1269 |
+
"160": {
|
| 1270 |
+
"content": "<|reserved_150|>",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": true
|
| 1276 |
+
},
|
| 1277 |
+
"161": {
|
| 1278 |
+
"content": "<|reserved_151|>",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": true
|
| 1284 |
+
},
|
| 1285 |
+
"162": {
|
| 1286 |
+
"content": "<|reserved_152|>",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": true
|
| 1292 |
+
},
|
| 1293 |
+
"163": {
|
| 1294 |
+
"content": "<|reserved_153|>",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": true
|
| 1300 |
+
},
|
| 1301 |
+
"164": {
|
| 1302 |
+
"content": "<|reserved_154|>",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": true
|
| 1308 |
+
},
|
| 1309 |
+
"165": {
|
| 1310 |
+
"content": "<|reserved_155|>",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": true
|
| 1316 |
+
},
|
| 1317 |
+
"166": {
|
| 1318 |
+
"content": "<|reserved_156|>",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": true
|
| 1324 |
+
},
|
| 1325 |
+
"167": {
|
| 1326 |
+
"content": "<|reserved_157|>",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": true
|
| 1332 |
+
},
|
| 1333 |
+
"168": {
|
| 1334 |
+
"content": "<|reserved_158|>",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": true
|
| 1340 |
+
},
|
| 1341 |
+
"169": {
|
| 1342 |
+
"content": "<|reserved_159|>",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": true
|
| 1348 |
+
},
|
| 1349 |
+
"170": {
|
| 1350 |
+
"content": "<|reserved_160|>",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": true
|
| 1356 |
+
},
|
| 1357 |
+
"171": {
|
| 1358 |
+
"content": "<|reserved_161|>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": true
|
| 1364 |
+
},
|
| 1365 |
+
"172": {
|
| 1366 |
+
"content": "<|reserved_162|>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": true
|
| 1372 |
+
},
|
| 1373 |
+
"173": {
|
| 1374 |
+
"content": "<|reserved_163|>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": true
|
| 1380 |
+
},
|
| 1381 |
+
"174": {
|
| 1382 |
+
"content": "<|reserved_164|>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": true
|
| 1388 |
+
},
|
| 1389 |
+
"175": {
|
| 1390 |
+
"content": "<|reserved_165|>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": true
|
| 1396 |
+
},
|
| 1397 |
+
"176": {
|
| 1398 |
+
"content": "<|reserved_166|>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": true
|
| 1404 |
+
},
|
| 1405 |
+
"177": {
|
| 1406 |
+
"content": "<|reserved_167|>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": true
|
| 1412 |
+
},
|
| 1413 |
+
"178": {
|
| 1414 |
+
"content": "<|reserved_168|>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": true
|
| 1420 |
+
},
|
| 1421 |
+
"179": {
|
| 1422 |
+
"content": "<|reserved_169|>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": true
|
| 1428 |
+
},
|
| 1429 |
+
"180": {
|
| 1430 |
+
"content": "<|reserved_170|>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": true
|
| 1436 |
+
},
|
| 1437 |
+
"181": {
|
| 1438 |
+
"content": "<|reserved_171|>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": true
|
| 1444 |
+
},
|
| 1445 |
+
"182": {
|
| 1446 |
+
"content": "<|reserved_172|>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": true
|
| 1452 |
+
},
|
| 1453 |
+
"183": {
|
| 1454 |
+
"content": "<|reserved_173|>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": true
|
| 1460 |
+
},
|
| 1461 |
+
"184": {
|
| 1462 |
+
"content": "<|reserved_174|>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": true
|
| 1468 |
+
},
|
| 1469 |
+
"185": {
|
| 1470 |
+
"content": "<|reserved_175|>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": true
|
| 1476 |
+
},
|
| 1477 |
+
"186": {
|
| 1478 |
+
"content": "<|reserved_176|>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": true
|
| 1484 |
+
},
|
| 1485 |
+
"187": {
|
| 1486 |
+
"content": "<|reserved_177|>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": true
|
| 1492 |
+
},
|
| 1493 |
+
"188": {
|
| 1494 |
+
"content": "<|reserved_178|>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": true
|
| 1500 |
+
},
|
| 1501 |
+
"189": {
|
| 1502 |
+
"content": "<|reserved_179|>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": true
|
| 1508 |
+
},
|
| 1509 |
+
"190": {
|
| 1510 |
+
"content": "<|reserved_180|>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": true
|
| 1516 |
+
},
|
| 1517 |
+
"191": {
|
| 1518 |
+
"content": "<|reserved_181|>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": true
|
| 1524 |
+
},
|
| 1525 |
+
"192": {
|
| 1526 |
+
"content": "<|reserved_182|>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": true
|
| 1532 |
+
},
|
| 1533 |
+
"193": {
|
| 1534 |
+
"content": "<|reserved_183|>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": true
|
| 1540 |
+
},
|
| 1541 |
+
"194": {
|
| 1542 |
+
"content": "<|reserved_184|>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": true
|
| 1548 |
+
},
|
| 1549 |
+
"195": {
|
| 1550 |
+
"content": "<|reserved_185|>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": true
|
| 1556 |
+
},
|
| 1557 |
+
"196": {
|
| 1558 |
+
"content": "<|reserved_186|>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": true
|
| 1564 |
+
},
|
| 1565 |
+
"197": {
|
| 1566 |
+
"content": "<|reserved_187|>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": true
|
| 1572 |
+
},
|
| 1573 |
+
"198": {
|
| 1574 |
+
"content": "<|reserved_188|>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": true
|
| 1580 |
+
},
|
| 1581 |
+
"199": {
|
| 1582 |
+
"content": "<|reserved_189|>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": true
|
| 1588 |
+
},
|
| 1589 |
+
"200": {
|
| 1590 |
+
"content": "<|reserved_190|>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": true
|
| 1596 |
+
},
|
| 1597 |
+
"201": {
|
| 1598 |
+
"content": "<|reserved_191|>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": true
|
| 1604 |
+
},
|
| 1605 |
+
"202": {
|
| 1606 |
+
"content": "<|reserved_192|>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": true
|
| 1612 |
+
},
|
| 1613 |
+
"203": {
|
| 1614 |
+
"content": "<|reserved_193|>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": true
|
| 1620 |
+
},
|
| 1621 |
+
"204": {
|
| 1622 |
+
"content": "<|reserved_194|>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": true
|
| 1628 |
+
},
|
| 1629 |
+
"205": {
|
| 1630 |
+
"content": "<|reserved_195|>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": true
|
| 1636 |
+
},
|
| 1637 |
+
"206": {
|
| 1638 |
+
"content": "<|reserved_196|>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": true
|
| 1644 |
+
},
|
| 1645 |
+
"207": {
|
| 1646 |
+
"content": "<|reserved_197|>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": true
|
| 1652 |
+
},
|
| 1653 |
+
"208": {
|
| 1654 |
+
"content": "<|reserved_198|>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": true
|
| 1660 |
+
},
|
| 1661 |
+
"209": {
|
| 1662 |
+
"content": "<|reserved_199|>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": true
|
| 1668 |
+
},
|
| 1669 |
+
"210": {
|
| 1670 |
+
"content": "<|reserved_200|>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": true
|
| 1676 |
+
},
|
| 1677 |
+
"211": {
|
| 1678 |
+
"content": "<|reserved_201|>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": true
|
| 1684 |
+
},
|
| 1685 |
+
"212": {
|
| 1686 |
+
"content": "<|reserved_202|>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": true
|
| 1692 |
+
},
|
| 1693 |
+
"213": {
|
| 1694 |
+
"content": "<|reserved_203|>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": true
|
| 1700 |
+
},
|
| 1701 |
+
"214": {
|
| 1702 |
+
"content": "<|reserved_204|>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": true
|
| 1708 |
+
},
|
| 1709 |
+
"215": {
|
| 1710 |
+
"content": "<|reserved_205|>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": true
|
| 1716 |
+
},
|
| 1717 |
+
"216": {
|
| 1718 |
+
"content": "<|reserved_206|>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": true
|
| 1724 |
+
},
|
| 1725 |
+
"217": {
|
| 1726 |
+
"content": "<|reserved_207|>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": true
|
| 1732 |
+
},
|
| 1733 |
+
"218": {
|
| 1734 |
+
"content": "<|reserved_208|>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": true
|
| 1740 |
+
},
|
| 1741 |
+
"219": {
|
| 1742 |
+
"content": "<|reserved_209|>",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": true
|
| 1748 |
+
},
|
| 1749 |
+
"220": {
|
| 1750 |
+
"content": "<|reserved_210|>",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": true
|
| 1756 |
+
},
|
| 1757 |
+
"221": {
|
| 1758 |
+
"content": "<|reserved_211|>",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": true
|
| 1764 |
+
},
|
| 1765 |
+
"222": {
|
| 1766 |
+
"content": "<|reserved_212|>",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": true
|
| 1772 |
+
},
|
| 1773 |
+
"223": {
|
| 1774 |
+
"content": "<|reserved_213|>",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": true
|
| 1780 |
+
},
|
| 1781 |
+
"224": {
|
| 1782 |
+
"content": "<|reserved_214|>",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": true
|
| 1788 |
+
},
|
| 1789 |
+
"225": {
|
| 1790 |
+
"content": "<|reserved_215|>",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": true
|
| 1796 |
+
},
|
| 1797 |
+
"226": {
|
| 1798 |
+
"content": "<|reserved_216|>",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": true
|
| 1804 |
+
},
|
| 1805 |
+
"227": {
|
| 1806 |
+
"content": "<|reserved_217|>",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": true
|
| 1812 |
+
},
|
| 1813 |
+
"228": {
|
| 1814 |
+
"content": "<|reserved_218|>",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": true
|
| 1820 |
+
},
|
| 1821 |
+
"229": {
|
| 1822 |
+
"content": "<|reserved_219|>",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": true
|
| 1828 |
+
},
|
| 1829 |
+
"230": {
|
| 1830 |
+
"content": "<|reserved_220|>",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": true
|
| 1836 |
+
},
|
| 1837 |
+
"231": {
|
| 1838 |
+
"content": "<|reserved_221|>",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": true
|
| 1844 |
+
},
|
| 1845 |
+
"232": {
|
| 1846 |
+
"content": "<|reserved_222|>",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": true
|
| 1852 |
+
},
|
| 1853 |
+
"233": {
|
| 1854 |
+
"content": "<|reserved_223|>",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": true
|
| 1860 |
+
},
|
| 1861 |
+
"234": {
|
| 1862 |
+
"content": "<|reserved_224|>",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": true
|
| 1868 |
+
},
|
| 1869 |
+
"235": {
|
| 1870 |
+
"content": "<|reserved_225|>",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": true
|
| 1876 |
+
},
|
| 1877 |
+
"236": {
|
| 1878 |
+
"content": "<|reserved_226|>",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": true
|
| 1884 |
+
},
|
| 1885 |
+
"237": {
|
| 1886 |
+
"content": "<|reserved_227|>",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": true
|
| 1892 |
+
},
|
| 1893 |
+
"238": {
|
| 1894 |
+
"content": "<|reserved_228|>",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": true
|
| 1900 |
+
},
|
| 1901 |
+
"239": {
|
| 1902 |
+
"content": "<|reserved_229|>",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": true
|
| 1908 |
+
},
|
| 1909 |
+
"240": {
|
| 1910 |
+
"content": "<|reserved_230|>",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": true
|
| 1916 |
+
},
|
| 1917 |
+
"241": {
|
| 1918 |
+
"content": "<|reserved_231|>",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": true
|
| 1924 |
+
},
|
| 1925 |
+
"242": {
|
| 1926 |
+
"content": "<|reserved_232|>",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": true
|
| 1932 |
+
},
|
| 1933 |
+
"243": {
|
| 1934 |
+
"content": "<|reserved_233|>",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": true
|
| 1940 |
+
},
|
| 1941 |
+
"244": {
|
| 1942 |
+
"content": "<|reserved_234|>",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": true
|
| 1948 |
+
},
|
| 1949 |
+
"245": {
|
| 1950 |
+
"content": "<|reserved_235|>",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": true
|
| 1956 |
+
},
|
| 1957 |
+
"246": {
|
| 1958 |
+
"content": "<|reserved_236|>",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": true
|
| 1964 |
+
},
|
| 1965 |
+
"247": {
|
| 1966 |
+
"content": "<|reserved_237|>",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": true
|
| 1972 |
+
},
|
| 1973 |
+
"248": {
|
| 1974 |
+
"content": "<|reserved_238|>",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": true
|
| 1980 |
+
},
|
| 1981 |
+
"249": {
|
| 1982 |
+
"content": "<|reserved_239|>",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": true
|
| 1988 |
+
},
|
| 1989 |
+
"250": {
|
| 1990 |
+
"content": "<|reserved_240|>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": true
|
| 1996 |
+
},
|
| 1997 |
+
"251": {
|
| 1998 |
+
"content": "<|reserved_241|>",
|
| 1999 |
+
"lstrip": false,
|
| 2000 |
+
"normalized": false,
|
| 2001 |
+
"rstrip": false,
|
| 2002 |
+
"single_word": false,
|
| 2003 |
+
"special": true
|
| 2004 |
+
},
|
| 2005 |
+
"252": {
|
| 2006 |
+
"content": "<|reserved_242|>",
|
| 2007 |
+
"lstrip": false,
|
| 2008 |
+
"normalized": false,
|
| 2009 |
+
"rstrip": false,
|
| 2010 |
+
"single_word": false,
|
| 2011 |
+
"special": true
|
| 2012 |
+
},
|
| 2013 |
+
"253": {
|
| 2014 |
+
"content": "<|reserved_243|>",
|
| 2015 |
+
"lstrip": false,
|
| 2016 |
+
"normalized": false,
|
| 2017 |
+
"rstrip": false,
|
| 2018 |
+
"single_word": false,
|
| 2019 |
+
"special": true
|
| 2020 |
+
},
|
| 2021 |
+
"254": {
|
| 2022 |
+
"content": "<|reserved_244|>",
|
| 2023 |
+
"lstrip": false,
|
| 2024 |
+
"normalized": false,
|
| 2025 |
+
"rstrip": false,
|
| 2026 |
+
"single_word": false,
|
| 2027 |
+
"special": true
|
| 2028 |
+
},
|
| 2029 |
+
"255": {
|
| 2030 |
+
"content": "<|reserved_245|>",
|
| 2031 |
+
"lstrip": false,
|
| 2032 |
+
"normalized": false,
|
| 2033 |
+
"rstrip": false,
|
| 2034 |
+
"single_word": false,
|
| 2035 |
+
"special": true
|
| 2036 |
+
},
|
| 2037 |
+
"256": {
|
| 2038 |
+
"content": "<|reserved_246|>",
|
| 2039 |
+
"lstrip": false,
|
| 2040 |
+
"normalized": false,
|
| 2041 |
+
"rstrip": false,
|
| 2042 |
+
"single_word": false,
|
| 2043 |
+
"special": true
|
| 2044 |
+
},
|
| 2045 |
+
"257": {
|
| 2046 |
+
"content": "<|reserved_247|>",
|
| 2047 |
+
"lstrip": false,
|
| 2048 |
+
"normalized": false,
|
| 2049 |
+
"rstrip": false,
|
| 2050 |
+
"single_word": false,
|
| 2051 |
+
"special": true
|
| 2052 |
+
},
|
| 2053 |
+
"258": {
|
| 2054 |
+
"content": "<|reserved_248|>",
|
| 2055 |
+
"lstrip": false,
|
| 2056 |
+
"normalized": false,
|
| 2057 |
+
"rstrip": false,
|
| 2058 |
+
"single_word": false,
|
| 2059 |
+
"special": true
|
| 2060 |
+
},
|
| 2061 |
+
"259": {
|
| 2062 |
+
"content": "<|reserved_249|>",
|
| 2063 |
+
"lstrip": false,
|
| 2064 |
+
"normalized": false,
|
| 2065 |
+
"rstrip": false,
|
| 2066 |
+
"single_word": false,
|
| 2067 |
+
"special": true
|
| 2068 |
+
},
|
| 2069 |
+
"260": {
|
| 2070 |
+
"content": "<|reserved_250|>",
|
| 2071 |
+
"lstrip": false,
|
| 2072 |
+
"normalized": false,
|
| 2073 |
+
"rstrip": false,
|
| 2074 |
+
"single_word": false,
|
| 2075 |
+
"special": true
|
| 2076 |
+
},
|
| 2077 |
+
"261": {
|
| 2078 |
+
"content": "<|reserved_251|>",
|
| 2079 |
+
"lstrip": false,
|
| 2080 |
+
"normalized": false,
|
| 2081 |
+
"rstrip": false,
|
| 2082 |
+
"single_word": false,
|
| 2083 |
+
"special": true
|
| 2084 |
+
},
|
| 2085 |
+
"262": {
|
| 2086 |
+
"content": "<|reserved_252|>",
|
| 2087 |
+
"lstrip": false,
|
| 2088 |
+
"normalized": false,
|
| 2089 |
+
"rstrip": false,
|
| 2090 |
+
"single_word": false,
|
| 2091 |
+
"special": true
|
| 2092 |
+
},
|
| 2093 |
+
"263": {
|
| 2094 |
+
"content": "<|reserved_253|>",
|
| 2095 |
+
"lstrip": false,
|
| 2096 |
+
"normalized": false,
|
| 2097 |
+
"rstrip": false,
|
| 2098 |
+
"single_word": false,
|
| 2099 |
+
"special": true
|
| 2100 |
+
},
|
| 2101 |
+
"264": {
|
| 2102 |
+
"content": "<|reserved_254|>",
|
| 2103 |
+
"lstrip": false,
|
| 2104 |
+
"normalized": false,
|
| 2105 |
+
"rstrip": false,
|
| 2106 |
+
"single_word": false,
|
| 2107 |
+
"special": true
|
| 2108 |
+
},
|
| 2109 |
+
"265": {
|
| 2110 |
+
"content": "<|reserved_255|>",
|
| 2111 |
+
"lstrip": false,
|
| 2112 |
+
"normalized": false,
|
| 2113 |
+
"rstrip": false,
|
| 2114 |
+
"single_word": false,
|
| 2115 |
+
"special": true
|
| 2116 |
+
},
|
| 2117 |
+
"266": {
|
| 2118 |
+
"content": "<|reserved_256|>",
|
| 2119 |
+
"lstrip": false,
|
| 2120 |
+
"normalized": false,
|
| 2121 |
+
"rstrip": false,
|
| 2122 |
+
"single_word": false,
|
| 2123 |
+
"special": true
|
| 2124 |
+
},
|
| 2125 |
+
"267": {
|
| 2126 |
+
"content": "<|reserved_257|>",
|
| 2127 |
+
"lstrip": false,
|
| 2128 |
+
"normalized": false,
|
| 2129 |
+
"rstrip": false,
|
| 2130 |
+
"single_word": false,
|
| 2131 |
+
"special": true
|
| 2132 |
+
},
|
| 2133 |
+
"268": {
|
| 2134 |
+
"content": "<|reserved_258|>",
|
| 2135 |
+
"lstrip": false,
|
| 2136 |
+
"normalized": false,
|
| 2137 |
+
"rstrip": false,
|
| 2138 |
+
"single_word": false,
|
| 2139 |
+
"special": true
|
| 2140 |
+
},
|
| 2141 |
+
"269": {
|
| 2142 |
+
"content": "<|reserved_259|>",
|
| 2143 |
+
"lstrip": false,
|
| 2144 |
+
"normalized": false,
|
| 2145 |
+
"rstrip": false,
|
| 2146 |
+
"single_word": false,
|
| 2147 |
+
"special": true
|
| 2148 |
+
},
|
| 2149 |
+
"270": {
|
| 2150 |
+
"content": "<|reserved_260|>",
|
| 2151 |
+
"lstrip": false,
|
| 2152 |
+
"normalized": false,
|
| 2153 |
+
"rstrip": false,
|
| 2154 |
+
"single_word": false,
|
| 2155 |
+
"special": true
|
| 2156 |
+
},
|
| 2157 |
+
"271": {
|
| 2158 |
+
"content": "<|reserved_261|>",
|
| 2159 |
+
"lstrip": false,
|
| 2160 |
+
"normalized": false,
|
| 2161 |
+
"rstrip": false,
|
| 2162 |
+
"single_word": false,
|
| 2163 |
+
"special": true
|
| 2164 |
+
},
|
| 2165 |
+
"272": {
|
| 2166 |
+
"content": "<|reserved_262|>",
|
| 2167 |
+
"lstrip": false,
|
| 2168 |
+
"normalized": false,
|
| 2169 |
+
"rstrip": false,
|
| 2170 |
+
"single_word": false,
|
| 2171 |
+
"special": true
|
| 2172 |
+
},
|
| 2173 |
+
"273": {
|
| 2174 |
+
"content": "<|reserved_263|>",
|
| 2175 |
+
"lstrip": false,
|
| 2176 |
+
"normalized": false,
|
| 2177 |
+
"rstrip": false,
|
| 2178 |
+
"single_word": false,
|
| 2179 |
+
"special": true
|
| 2180 |
+
},
|
| 2181 |
+
"274": {
|
| 2182 |
+
"content": "<|reserved_264|>",
|
| 2183 |
+
"lstrip": false,
|
| 2184 |
+
"normalized": false,
|
| 2185 |
+
"rstrip": false,
|
| 2186 |
+
"single_word": false,
|
| 2187 |
+
"special": true
|
| 2188 |
+
},
|
| 2189 |
+
"275": {
|
| 2190 |
+
"content": "<|reserved_265|>",
|
| 2191 |
+
"lstrip": false,
|
| 2192 |
+
"normalized": false,
|
| 2193 |
+
"rstrip": false,
|
| 2194 |
+
"single_word": false,
|
| 2195 |
+
"special": true
|
| 2196 |
+
},
|
| 2197 |
+
"276": {
|
| 2198 |
+
"content": "<|reserved_266|>",
|
| 2199 |
+
"lstrip": false,
|
| 2200 |
+
"normalized": false,
|
| 2201 |
+
"rstrip": false,
|
| 2202 |
+
"single_word": false,
|
| 2203 |
+
"special": true
|
| 2204 |
+
},
|
| 2205 |
+
"277": {
|
| 2206 |
+
"content": "<|reserved_267|>",
|
| 2207 |
+
"lstrip": false,
|
| 2208 |
+
"normalized": false,
|
| 2209 |
+
"rstrip": false,
|
| 2210 |
+
"single_word": false,
|
| 2211 |
+
"special": true
|
| 2212 |
+
},
|
| 2213 |
+
"278": {
|
| 2214 |
+
"content": "<|reserved_268|>",
|
| 2215 |
+
"lstrip": false,
|
| 2216 |
+
"normalized": false,
|
| 2217 |
+
"rstrip": false,
|
| 2218 |
+
"single_word": false,
|
| 2219 |
+
"special": true
|
| 2220 |
+
},
|
| 2221 |
+
"279": {
|
| 2222 |
+
"content": "<|reserved_269|>",
|
| 2223 |
+
"lstrip": false,
|
| 2224 |
+
"normalized": false,
|
| 2225 |
+
"rstrip": false,
|
| 2226 |
+
"single_word": false,
|
| 2227 |
+
"special": true
|
| 2228 |
+
},
|
| 2229 |
+
"280": {
|
| 2230 |
+
"content": "<|reserved_270|>",
|
| 2231 |
+
"lstrip": false,
|
| 2232 |
+
"normalized": false,
|
| 2233 |
+
"rstrip": false,
|
| 2234 |
+
"single_word": false,
|
| 2235 |
+
"special": true
|
| 2236 |
+
},
|
| 2237 |
+
"281": {
|
| 2238 |
+
"content": "<|reserved_271|>",
|
| 2239 |
+
"lstrip": false,
|
| 2240 |
+
"normalized": false,
|
| 2241 |
+
"rstrip": false,
|
| 2242 |
+
"single_word": false,
|
| 2243 |
+
"special": true
|
| 2244 |
+
},
|
| 2245 |
+
"282": {
|
| 2246 |
+
"content": "<|reserved_272|>",
|
| 2247 |
+
"lstrip": false,
|
| 2248 |
+
"normalized": false,
|
| 2249 |
+
"rstrip": false,
|
| 2250 |
+
"single_word": false,
|
| 2251 |
+
"special": true
|
| 2252 |
+
},
|
| 2253 |
+
"283": {
|
| 2254 |
+
"content": "<|reserved_273|>",
|
| 2255 |
+
"lstrip": false,
|
| 2256 |
+
"normalized": false,
|
| 2257 |
+
"rstrip": false,
|
| 2258 |
+
"single_word": false,
|
| 2259 |
+
"special": true
|
| 2260 |
+
},
|
| 2261 |
+
"284": {
|
| 2262 |
+
"content": "<|reserved_274|>",
|
| 2263 |
+
"lstrip": false,
|
| 2264 |
+
"normalized": false,
|
| 2265 |
+
"rstrip": false,
|
| 2266 |
+
"single_word": false,
|
| 2267 |
+
"special": true
|
| 2268 |
+
},
|
| 2269 |
+
"285": {
|
| 2270 |
+
"content": "<|reserved_275|>",
|
| 2271 |
+
"lstrip": false,
|
| 2272 |
+
"normalized": false,
|
| 2273 |
+
"rstrip": false,
|
| 2274 |
+
"single_word": false,
|
| 2275 |
+
"special": true
|
| 2276 |
+
},
|
| 2277 |
+
"286": {
|
| 2278 |
+
"content": "<|reserved_276|>",
|
| 2279 |
+
"lstrip": false,
|
| 2280 |
+
"normalized": false,
|
| 2281 |
+
"rstrip": false,
|
| 2282 |
+
"single_word": false,
|
| 2283 |
+
"special": true
|
| 2284 |
+
},
|
| 2285 |
+
"287": {
|
| 2286 |
+
"content": "<|reserved_277|>",
|
| 2287 |
+
"lstrip": false,
|
| 2288 |
+
"normalized": false,
|
| 2289 |
+
"rstrip": false,
|
| 2290 |
+
"single_word": false,
|
| 2291 |
+
"special": true
|
| 2292 |
+
},
|
| 2293 |
+
"288": {
|
| 2294 |
+
"content": "<|reserved_278|>",
|
| 2295 |
+
"lstrip": false,
|
| 2296 |
+
"normalized": false,
|
| 2297 |
+
"rstrip": false,
|
| 2298 |
+
"single_word": false,
|
| 2299 |
+
"special": true
|
| 2300 |
+
},
|
| 2301 |
+
"289": {
|
| 2302 |
+
"content": "<|reserved_279|>",
|
| 2303 |
+
"lstrip": false,
|
| 2304 |
+
"normalized": false,
|
| 2305 |
+
"rstrip": false,
|
| 2306 |
+
"single_word": false,
|
| 2307 |
+
"special": true
|
| 2308 |
+
},
|
| 2309 |
+
"290": {
|
| 2310 |
+
"content": "<|reserved_280|>",
|
| 2311 |
+
"lstrip": false,
|
| 2312 |
+
"normalized": false,
|
| 2313 |
+
"rstrip": false,
|
| 2314 |
+
"single_word": false,
|
| 2315 |
+
"special": true
|
| 2316 |
+
},
|
| 2317 |
+
"291": {
|
| 2318 |
+
"content": "<|reserved_281|>",
|
| 2319 |
+
"lstrip": false,
|
| 2320 |
+
"normalized": false,
|
| 2321 |
+
"rstrip": false,
|
| 2322 |
+
"single_word": false,
|
| 2323 |
+
"special": true
|
| 2324 |
+
},
|
| 2325 |
+
"292": {
|
| 2326 |
+
"content": "<|reserved_282|>",
|
| 2327 |
+
"lstrip": false,
|
| 2328 |
+
"normalized": false,
|
| 2329 |
+
"rstrip": false,
|
| 2330 |
+
"single_word": false,
|
| 2331 |
+
"special": true
|
| 2332 |
+
},
|
| 2333 |
+
"293": {
|
| 2334 |
+
"content": "<|reserved_283|>",
|
| 2335 |
+
"lstrip": false,
|
| 2336 |
+
"normalized": false,
|
| 2337 |
+
"rstrip": false,
|
| 2338 |
+
"single_word": false,
|
| 2339 |
+
"special": true
|
| 2340 |
+
},
|
| 2341 |
+
"294": {
|
| 2342 |
+
"content": "<|reserved_284|>",
|
| 2343 |
+
"lstrip": false,
|
| 2344 |
+
"normalized": false,
|
| 2345 |
+
"rstrip": false,
|
| 2346 |
+
"single_word": false,
|
| 2347 |
+
"special": true
|
| 2348 |
+
},
|
| 2349 |
+
"295": {
|
| 2350 |
+
"content": "<|reserved_285|>",
|
| 2351 |
+
"lstrip": false,
|
| 2352 |
+
"normalized": false,
|
| 2353 |
+
"rstrip": false,
|
| 2354 |
+
"single_word": false,
|
| 2355 |
+
"special": true
|
| 2356 |
+
},
|
| 2357 |
+
"296": {
|
| 2358 |
+
"content": "<|reserved_286|>",
|
| 2359 |
+
"lstrip": false,
|
| 2360 |
+
"normalized": false,
|
| 2361 |
+
"rstrip": false,
|
| 2362 |
+
"single_word": false,
|
| 2363 |
+
"special": true
|
| 2364 |
+
},
|
| 2365 |
+
"297": {
|
| 2366 |
+
"content": "<|reserved_287|>",
|
| 2367 |
+
"lstrip": false,
|
| 2368 |
+
"normalized": false,
|
| 2369 |
+
"rstrip": false,
|
| 2370 |
+
"single_word": false,
|
| 2371 |
+
"special": true
|
| 2372 |
+
},
|
| 2373 |
+
"298": {
|
| 2374 |
+
"content": "<|reserved_288|>",
|
| 2375 |
+
"lstrip": false,
|
| 2376 |
+
"normalized": false,
|
| 2377 |
+
"rstrip": false,
|
| 2378 |
+
"single_word": false,
|
| 2379 |
+
"special": true
|
| 2380 |
+
},
|
| 2381 |
+
"299": {
|
| 2382 |
+
"content": "<|reserved_289|>",
|
| 2383 |
+
"lstrip": false,
|
| 2384 |
+
"normalized": false,
|
| 2385 |
+
"rstrip": false,
|
| 2386 |
+
"single_word": false,
|
| 2387 |
+
"special": true
|
| 2388 |
+
},
|
| 2389 |
+
"300": {
|
| 2390 |
+
"content": "<|reserved_290|>",
|
| 2391 |
+
"lstrip": false,
|
| 2392 |
+
"normalized": false,
|
| 2393 |
+
"rstrip": false,
|
| 2394 |
+
"single_word": false,
|
| 2395 |
+
"special": true
|
| 2396 |
+
},
|
| 2397 |
+
"301": {
|
| 2398 |
+
"content": "<|reserved_291|>",
|
| 2399 |
+
"lstrip": false,
|
| 2400 |
+
"normalized": false,
|
| 2401 |
+
"rstrip": false,
|
| 2402 |
+
"single_word": false,
|
| 2403 |
+
"special": true
|
| 2404 |
+
},
|
| 2405 |
+
"302": {
|
| 2406 |
+
"content": "<|reserved_292|>",
|
| 2407 |
+
"lstrip": false,
|
| 2408 |
+
"normalized": false,
|
| 2409 |
+
"rstrip": false,
|
| 2410 |
+
"single_word": false,
|
| 2411 |
+
"special": true
|
| 2412 |
+
},
|
| 2413 |
+
"303": {
|
| 2414 |
+
"content": "<|reserved_293|>",
|
| 2415 |
+
"lstrip": false,
|
| 2416 |
+
"normalized": false,
|
| 2417 |
+
"rstrip": false,
|
| 2418 |
+
"single_word": false,
|
| 2419 |
+
"special": true
|
| 2420 |
+
},
|
| 2421 |
+
"304": {
|
| 2422 |
+
"content": "<|reserved_294|>",
|
| 2423 |
+
"lstrip": false,
|
| 2424 |
+
"normalized": false,
|
| 2425 |
+
"rstrip": false,
|
| 2426 |
+
"single_word": false,
|
| 2427 |
+
"special": true
|
| 2428 |
+
},
|
| 2429 |
+
"305": {
|
| 2430 |
+
"content": "<|reserved_295|>",
|
| 2431 |
+
"lstrip": false,
|
| 2432 |
+
"normalized": false,
|
| 2433 |
+
"rstrip": false,
|
| 2434 |
+
"single_word": false,
|
| 2435 |
+
"special": true
|
| 2436 |
+
},
|
| 2437 |
+
"306": {
|
| 2438 |
+
"content": "<|reserved_296|>",
|
| 2439 |
+
"lstrip": false,
|
| 2440 |
+
"normalized": false,
|
| 2441 |
+
"rstrip": false,
|
| 2442 |
+
"single_word": false,
|
| 2443 |
+
"special": true
|
| 2444 |
+
},
|
| 2445 |
+
"307": {
|
| 2446 |
+
"content": "<|reserved_297|>",
|
| 2447 |
+
"lstrip": false,
|
| 2448 |
+
"normalized": false,
|
| 2449 |
+
"rstrip": false,
|
| 2450 |
+
"single_word": false,
|
| 2451 |
+
"special": true
|
| 2452 |
+
},
|
| 2453 |
+
"308": {
|
| 2454 |
+
"content": "<|reserved_298|>",
|
| 2455 |
+
"lstrip": false,
|
| 2456 |
+
"normalized": false,
|
| 2457 |
+
"rstrip": false,
|
| 2458 |
+
"single_word": false,
|
| 2459 |
+
"special": true
|
| 2460 |
+
},
|
| 2461 |
+
"309": {
|
| 2462 |
+
"content": "<|reserved_299|>",
|
| 2463 |
+
"lstrip": false,
|
| 2464 |
+
"normalized": false,
|
| 2465 |
+
"rstrip": false,
|
| 2466 |
+
"single_word": false,
|
| 2467 |
+
"special": true
|
| 2468 |
+
},
|
| 2469 |
+
"310": {
|
| 2470 |
+
"content": "<|reserved_300|>",
|
| 2471 |
+
"lstrip": false,
|
| 2472 |
+
"normalized": false,
|
| 2473 |
+
"rstrip": false,
|
| 2474 |
+
"single_word": false,
|
| 2475 |
+
"special": true
|
| 2476 |
+
},
|
| 2477 |
+
"311": {
|
| 2478 |
+
"content": "<|reserved_301|>",
|
| 2479 |
+
"lstrip": false,
|
| 2480 |
+
"normalized": false,
|
| 2481 |
+
"rstrip": false,
|
| 2482 |
+
"single_word": false,
|
| 2483 |
+
"special": true
|
| 2484 |
+
},
|
| 2485 |
+
"312": {
|
| 2486 |
+
"content": "<|reserved_302|>",
|
| 2487 |
+
"lstrip": false,
|
| 2488 |
+
"normalized": false,
|
| 2489 |
+
"rstrip": false,
|
| 2490 |
+
"single_word": false,
|
| 2491 |
+
"special": true
|
| 2492 |
+
},
|
| 2493 |
+
"313": {
|
| 2494 |
+
"content": "<|reserved_303|>",
|
| 2495 |
+
"lstrip": false,
|
| 2496 |
+
"normalized": false,
|
| 2497 |
+
"rstrip": false,
|
| 2498 |
+
"single_word": false,
|
| 2499 |
+
"special": true
|
| 2500 |
+
},
|
| 2501 |
+
"314": {
|
| 2502 |
+
"content": "<|reserved_304|>",
|
| 2503 |
+
"lstrip": false,
|
| 2504 |
+
"normalized": false,
|
| 2505 |
+
"rstrip": false,
|
| 2506 |
+
"single_word": false,
|
| 2507 |
+
"special": true
|
| 2508 |
+
},
|
| 2509 |
+
"315": {
|
| 2510 |
+
"content": "<|reserved_305|>",
|
| 2511 |
+
"lstrip": false,
|
| 2512 |
+
"normalized": false,
|
| 2513 |
+
"rstrip": false,
|
| 2514 |
+
"single_word": false,
|
| 2515 |
+
"special": true
|
| 2516 |
+
},
|
| 2517 |
+
"316": {
|
| 2518 |
+
"content": "<|reserved_306|>",
|
| 2519 |
+
"lstrip": false,
|
| 2520 |
+
"normalized": false,
|
| 2521 |
+
"rstrip": false,
|
| 2522 |
+
"single_word": false,
|
| 2523 |
+
"special": true
|
| 2524 |
+
},
|
| 2525 |
+
"317": {
|
| 2526 |
+
"content": "<|reserved_307|>",
|
| 2527 |
+
"lstrip": false,
|
| 2528 |
+
"normalized": false,
|
| 2529 |
+
"rstrip": false,
|
| 2530 |
+
"single_word": false,
|
| 2531 |
+
"special": true
|
| 2532 |
+
},
|
| 2533 |
+
"318": {
|
| 2534 |
+
"content": "<|reserved_308|>",
|
| 2535 |
+
"lstrip": false,
|
| 2536 |
+
"normalized": false,
|
| 2537 |
+
"rstrip": false,
|
| 2538 |
+
"single_word": false,
|
| 2539 |
+
"special": true
|
| 2540 |
+
},
|
| 2541 |
+
"319": {
|
| 2542 |
+
"content": "<|reserved_309|>",
|
| 2543 |
+
"lstrip": false,
|
| 2544 |
+
"normalized": false,
|
| 2545 |
+
"rstrip": false,
|
| 2546 |
+
"single_word": false,
|
| 2547 |
+
"special": true
|
| 2548 |
+
},
|
| 2549 |
+
"320": {
|
| 2550 |
+
"content": "<|reserved_310|>",
|
| 2551 |
+
"lstrip": false,
|
| 2552 |
+
"normalized": false,
|
| 2553 |
+
"rstrip": false,
|
| 2554 |
+
"single_word": false,
|
| 2555 |
+
"special": true
|
| 2556 |
+
},
|
| 2557 |
+
"321": {
|
| 2558 |
+
"content": "<|reserved_311|>",
|
| 2559 |
+
"lstrip": false,
|
| 2560 |
+
"normalized": false,
|
| 2561 |
+
"rstrip": false,
|
| 2562 |
+
"single_word": false,
|
| 2563 |
+
"special": true
|
| 2564 |
+
},
|
| 2565 |
+
"322": {
|
| 2566 |
+
"content": "<|reserved_312|>",
|
| 2567 |
+
"lstrip": false,
|
| 2568 |
+
"normalized": false,
|
| 2569 |
+
"rstrip": false,
|
| 2570 |
+
"single_word": false,
|
| 2571 |
+
"special": true
|
| 2572 |
+
},
|
| 2573 |
+
"323": {
|
| 2574 |
+
"content": "<|reserved_313|>",
|
| 2575 |
+
"lstrip": false,
|
| 2576 |
+
"normalized": false,
|
| 2577 |
+
"rstrip": false,
|
| 2578 |
+
"single_word": false,
|
| 2579 |
+
"special": true
|
| 2580 |
+
},
|
| 2581 |
+
"324": {
|
| 2582 |
+
"content": "<|reserved_314|>",
|
| 2583 |
+
"lstrip": false,
|
| 2584 |
+
"normalized": false,
|
| 2585 |
+
"rstrip": false,
|
| 2586 |
+
"single_word": false,
|
| 2587 |
+
"special": true
|
| 2588 |
+
},
|
| 2589 |
+
"325": {
|
| 2590 |
+
"content": "<|reserved_315|>",
|
| 2591 |
+
"lstrip": false,
|
| 2592 |
+
"normalized": false,
|
| 2593 |
+
"rstrip": false,
|
| 2594 |
+
"single_word": false,
|
| 2595 |
+
"special": true
|
| 2596 |
+
},
|
| 2597 |
+
"326": {
|
| 2598 |
+
"content": "<|reserved_316|>",
|
| 2599 |
+
"lstrip": false,
|
| 2600 |
+
"normalized": false,
|
| 2601 |
+
"rstrip": false,
|
| 2602 |
+
"single_word": false,
|
| 2603 |
+
"special": true
|
| 2604 |
+
},
|
| 2605 |
+
"327": {
|
| 2606 |
+
"content": "<|reserved_317|>",
|
| 2607 |
+
"lstrip": false,
|
| 2608 |
+
"normalized": false,
|
| 2609 |
+
"rstrip": false,
|
| 2610 |
+
"single_word": false,
|
| 2611 |
+
"special": true
|
| 2612 |
+
},
|
| 2613 |
+
"328": {
|
| 2614 |
+
"content": "<|reserved_318|>",
|
| 2615 |
+
"lstrip": false,
|
| 2616 |
+
"normalized": false,
|
| 2617 |
+
"rstrip": false,
|
| 2618 |
+
"single_word": false,
|
| 2619 |
+
"special": true
|
| 2620 |
+
},
|
| 2621 |
+
"329": {
|
| 2622 |
+
"content": "<|reserved_319|>",
|
| 2623 |
+
"lstrip": false,
|
| 2624 |
+
"normalized": false,
|
| 2625 |
+
"rstrip": false,
|
| 2626 |
+
"single_word": false,
|
| 2627 |
+
"special": true
|
| 2628 |
+
},
|
| 2629 |
+
"330": {
|
| 2630 |
+
"content": "<|reserved_320|>",
|
| 2631 |
+
"lstrip": false,
|
| 2632 |
+
"normalized": false,
|
| 2633 |
+
"rstrip": false,
|
| 2634 |
+
"single_word": false,
|
| 2635 |
+
"special": true
|
| 2636 |
+
},
|
| 2637 |
+
"331": {
|
| 2638 |
+
"content": "<|reserved_321|>",
|
| 2639 |
+
"lstrip": false,
|
| 2640 |
+
"normalized": false,
|
| 2641 |
+
"rstrip": false,
|
| 2642 |
+
"single_word": false,
|
| 2643 |
+
"special": true
|
| 2644 |
+
},
|
| 2645 |
+
"332": {
|
| 2646 |
+
"content": "<|reserved_322|>",
|
| 2647 |
+
"lstrip": false,
|
| 2648 |
+
"normalized": false,
|
| 2649 |
+
"rstrip": false,
|
| 2650 |
+
"single_word": false,
|
| 2651 |
+
"special": true
|
| 2652 |
+
},
|
| 2653 |
+
"333": {
|
| 2654 |
+
"content": "<|reserved_323|>",
|
| 2655 |
+
"lstrip": false,
|
| 2656 |
+
"normalized": false,
|
| 2657 |
+
"rstrip": false,
|
| 2658 |
+
"single_word": false,
|
| 2659 |
+
"special": true
|
| 2660 |
+
},
|
| 2661 |
+
"334": {
|
| 2662 |
+
"content": "<|reserved_324|>",
|
| 2663 |
+
"lstrip": false,
|
| 2664 |
+
"normalized": false,
|
| 2665 |
+
"rstrip": false,
|
| 2666 |
+
"single_word": false,
|
| 2667 |
+
"special": true
|
| 2668 |
+
},
|
| 2669 |
+
"335": {
|
| 2670 |
+
"content": "<|reserved_325|>",
|
| 2671 |
+
"lstrip": false,
|
| 2672 |
+
"normalized": false,
|
| 2673 |
+
"rstrip": false,
|
| 2674 |
+
"single_word": false,
|
| 2675 |
+
"special": true
|
| 2676 |
+
},
|
| 2677 |
+
"336": {
|
| 2678 |
+
"content": "<|reserved_326|>",
|
| 2679 |
+
"lstrip": false,
|
| 2680 |
+
"normalized": false,
|
| 2681 |
+
"rstrip": false,
|
| 2682 |
+
"single_word": false,
|
| 2683 |
+
"special": true
|
| 2684 |
+
},
|
| 2685 |
+
"337": {
|
| 2686 |
+
"content": "<|reserved_327|>",
|
| 2687 |
+
"lstrip": false,
|
| 2688 |
+
"normalized": false,
|
| 2689 |
+
"rstrip": false,
|
| 2690 |
+
"single_word": false,
|
| 2691 |
+
"special": true
|
| 2692 |
+
},
|
| 2693 |
+
"338": {
|
| 2694 |
+
"content": "<|reserved_328|>",
|
| 2695 |
+
"lstrip": false,
|
| 2696 |
+
"normalized": false,
|
| 2697 |
+
"rstrip": false,
|
| 2698 |
+
"single_word": false,
|
| 2699 |
+
"special": true
|
| 2700 |
+
},
|
| 2701 |
+
"339": {
|
| 2702 |
+
"content": "<|reserved_329|>",
|
| 2703 |
+
"lstrip": false,
|
| 2704 |
+
"normalized": false,
|
| 2705 |
+
"rstrip": false,
|
| 2706 |
+
"single_word": false,
|
| 2707 |
+
"special": true
|
| 2708 |
+
},
|
| 2709 |
+
"340": {
|
| 2710 |
+
"content": "<|reserved_330|>",
|
| 2711 |
+
"lstrip": false,
|
| 2712 |
+
"normalized": false,
|
| 2713 |
+
"rstrip": false,
|
| 2714 |
+
"single_word": false,
|
| 2715 |
+
"special": true
|
| 2716 |
+
},
|
| 2717 |
+
"341": {
|
| 2718 |
+
"content": "<|reserved_331|>",
|
| 2719 |
+
"lstrip": false,
|
| 2720 |
+
"normalized": false,
|
| 2721 |
+
"rstrip": false,
|
| 2722 |
+
"single_word": false,
|
| 2723 |
+
"special": true
|
| 2724 |
+
},
|
| 2725 |
+
"342": {
|
| 2726 |
+
"content": "<|reserved_332|>",
|
| 2727 |
+
"lstrip": false,
|
| 2728 |
+
"normalized": false,
|
| 2729 |
+
"rstrip": false,
|
| 2730 |
+
"single_word": false,
|
| 2731 |
+
"special": true
|
| 2732 |
+
},
|
| 2733 |
+
"343": {
|
| 2734 |
+
"content": "<|reserved_333|>",
|
| 2735 |
+
"lstrip": false,
|
| 2736 |
+
"normalized": false,
|
| 2737 |
+
"rstrip": false,
|
| 2738 |
+
"single_word": false,
|
| 2739 |
+
"special": true
|
| 2740 |
+
},
|
| 2741 |
+
"344": {
|
| 2742 |
+
"content": "<|reserved_334|>",
|
| 2743 |
+
"lstrip": false,
|
| 2744 |
+
"normalized": false,
|
| 2745 |
+
"rstrip": false,
|
| 2746 |
+
"single_word": false,
|
| 2747 |
+
"special": true
|
| 2748 |
+
},
|
| 2749 |
+
"345": {
|
| 2750 |
+
"content": "<|reserved_335|>",
|
| 2751 |
+
"lstrip": false,
|
| 2752 |
+
"normalized": false,
|
| 2753 |
+
"rstrip": false,
|
| 2754 |
+
"single_word": false,
|
| 2755 |
+
"special": true
|
| 2756 |
+
},
|
| 2757 |
+
"346": {
|
| 2758 |
+
"content": "<|reserved_336|>",
|
| 2759 |
+
"lstrip": false,
|
| 2760 |
+
"normalized": false,
|
| 2761 |
+
"rstrip": false,
|
| 2762 |
+
"single_word": false,
|
| 2763 |
+
"special": true
|
| 2764 |
+
},
|
| 2765 |
+
"347": {
|
| 2766 |
+
"content": "<|reserved_337|>",
|
| 2767 |
+
"lstrip": false,
|
| 2768 |
+
"normalized": false,
|
| 2769 |
+
"rstrip": false,
|
| 2770 |
+
"single_word": false,
|
| 2771 |
+
"special": true
|
| 2772 |
+
},
|
| 2773 |
+
"348": {
|
| 2774 |
+
"content": "<|reserved_338|>",
|
| 2775 |
+
"lstrip": false,
|
| 2776 |
+
"normalized": false,
|
| 2777 |
+
"rstrip": false,
|
| 2778 |
+
"single_word": false,
|
| 2779 |
+
"special": true
|
| 2780 |
+
},
|
| 2781 |
+
"349": {
|
| 2782 |
+
"content": "<|reserved_339|>",
|
| 2783 |
+
"lstrip": false,
|
| 2784 |
+
"normalized": false,
|
| 2785 |
+
"rstrip": false,
|
| 2786 |
+
"single_word": false,
|
| 2787 |
+
"special": true
|
| 2788 |
+
},
|
| 2789 |
+
"350": {
|
| 2790 |
+
"content": "<|reserved_340|>",
|
| 2791 |
+
"lstrip": false,
|
| 2792 |
+
"normalized": false,
|
| 2793 |
+
"rstrip": false,
|
| 2794 |
+
"single_word": false,
|
| 2795 |
+
"special": true
|
| 2796 |
+
},
|
| 2797 |
+
"351": {
|
| 2798 |
+
"content": "<|reserved_341|>",
|
| 2799 |
+
"lstrip": false,
|
| 2800 |
+
"normalized": false,
|
| 2801 |
+
"rstrip": false,
|
| 2802 |
+
"single_word": false,
|
| 2803 |
+
"special": true
|
| 2804 |
+
},
|
| 2805 |
+
"352": {
|
| 2806 |
+
"content": "<|reserved_342|>",
|
| 2807 |
+
"lstrip": false,
|
| 2808 |
+
"normalized": false,
|
| 2809 |
+
"rstrip": false,
|
| 2810 |
+
"single_word": false,
|
| 2811 |
+
"special": true
|
| 2812 |
+
},
|
| 2813 |
+
"353": {
|
| 2814 |
+
"content": "<|reserved_343|>",
|
| 2815 |
+
"lstrip": false,
|
| 2816 |
+
"normalized": false,
|
| 2817 |
+
"rstrip": false,
|
| 2818 |
+
"single_word": false,
|
| 2819 |
+
"special": true
|
| 2820 |
+
},
|
| 2821 |
+
"354": {
|
| 2822 |
+
"content": "<|reserved_344|>",
|
| 2823 |
+
"lstrip": false,
|
| 2824 |
+
"normalized": false,
|
| 2825 |
+
"rstrip": false,
|
| 2826 |
+
"single_word": false,
|
| 2827 |
+
"special": true
|
| 2828 |
+
},
|
| 2829 |
+
"355": {
|
| 2830 |
+
"content": "<|reserved_345|>",
|
| 2831 |
+
"lstrip": false,
|
| 2832 |
+
"normalized": false,
|
| 2833 |
+
"rstrip": false,
|
| 2834 |
+
"single_word": false,
|
| 2835 |
+
"special": true
|
| 2836 |
+
},
|
| 2837 |
+
"356": {
|
| 2838 |
+
"content": "<|reserved_346|>",
|
| 2839 |
+
"lstrip": false,
|
| 2840 |
+
"normalized": false,
|
| 2841 |
+
"rstrip": false,
|
| 2842 |
+
"single_word": false,
|
| 2843 |
+
"special": true
|
| 2844 |
+
},
|
| 2845 |
+
"357": {
|
| 2846 |
+
"content": "<|reserved_347|>",
|
| 2847 |
+
"lstrip": false,
|
| 2848 |
+
"normalized": false,
|
| 2849 |
+
"rstrip": false,
|
| 2850 |
+
"single_word": false,
|
| 2851 |
+
"special": true
|
| 2852 |
+
},
|
| 2853 |
+
"358": {
|
| 2854 |
+
"content": "<|reserved_348|>",
|
| 2855 |
+
"lstrip": false,
|
| 2856 |
+
"normalized": false,
|
| 2857 |
+
"rstrip": false,
|
| 2858 |
+
"single_word": false,
|
| 2859 |
+
"special": true
|
| 2860 |
+
},
|
| 2861 |
+
"359": {
|
| 2862 |
+
"content": "<|reserved_349|>",
|
| 2863 |
+
"lstrip": false,
|
| 2864 |
+
"normalized": false,
|
| 2865 |
+
"rstrip": false,
|
| 2866 |
+
"single_word": false,
|
| 2867 |
+
"special": true
|
| 2868 |
+
},
|
| 2869 |
+
"360": {
|
| 2870 |
+
"content": "<|reserved_350|>",
|
| 2871 |
+
"lstrip": false,
|
| 2872 |
+
"normalized": false,
|
| 2873 |
+
"rstrip": false,
|
| 2874 |
+
"single_word": false,
|
| 2875 |
+
"special": true
|
| 2876 |
+
},
|
| 2877 |
+
"361": {
|
| 2878 |
+
"content": "<|reserved_351|>",
|
| 2879 |
+
"lstrip": false,
|
| 2880 |
+
"normalized": false,
|
| 2881 |
+
"rstrip": false,
|
| 2882 |
+
"single_word": false,
|
| 2883 |
+
"special": true
|
| 2884 |
+
},
|
| 2885 |
+
"362": {
|
| 2886 |
+
"content": "<|reserved_352|>",
|
| 2887 |
+
"lstrip": false,
|
| 2888 |
+
"normalized": false,
|
| 2889 |
+
"rstrip": false,
|
| 2890 |
+
"single_word": false,
|
| 2891 |
+
"special": true
|
| 2892 |
+
},
|
| 2893 |
+
"363": {
|
| 2894 |
+
"content": "<|reserved_353|>",
|
| 2895 |
+
"lstrip": false,
|
| 2896 |
+
"normalized": false,
|
| 2897 |
+
"rstrip": false,
|
| 2898 |
+
"single_word": false,
|
| 2899 |
+
"special": true
|
| 2900 |
+
},
|
| 2901 |
+
"364": {
|
| 2902 |
+
"content": "<|reserved_354|>",
|
| 2903 |
+
"lstrip": false,
|
| 2904 |
+
"normalized": false,
|
| 2905 |
+
"rstrip": false,
|
| 2906 |
+
"single_word": false,
|
| 2907 |
+
"special": true
|
| 2908 |
+
},
|
| 2909 |
+
"365": {
|
| 2910 |
+
"content": "<|reserved_355|>",
|
| 2911 |
+
"lstrip": false,
|
| 2912 |
+
"normalized": false,
|
| 2913 |
+
"rstrip": false,
|
| 2914 |
+
"single_word": false,
|
| 2915 |
+
"special": true
|
| 2916 |
+
},
|
| 2917 |
+
"366": {
|
| 2918 |
+
"content": "<|reserved_356|>",
|
| 2919 |
+
"lstrip": false,
|
| 2920 |
+
"normalized": false,
|
| 2921 |
+
"rstrip": false,
|
| 2922 |
+
"single_word": false,
|
| 2923 |
+
"special": true
|
| 2924 |
+
},
|
| 2925 |
+
"367": {
|
| 2926 |
+
"content": "<|reserved_357|>",
|
| 2927 |
+
"lstrip": false,
|
| 2928 |
+
"normalized": false,
|
| 2929 |
+
"rstrip": false,
|
| 2930 |
+
"single_word": false,
|
| 2931 |
+
"special": true
|
| 2932 |
+
},
|
| 2933 |
+
"368": {
|
| 2934 |
+
"content": "<|reserved_358|>",
|
| 2935 |
+
"lstrip": false,
|
| 2936 |
+
"normalized": false,
|
| 2937 |
+
"rstrip": false,
|
| 2938 |
+
"single_word": false,
|
| 2939 |
+
"special": true
|
| 2940 |
+
},
|
| 2941 |
+
"369": {
|
| 2942 |
+
"content": "<|reserved_359|>",
|
| 2943 |
+
"lstrip": false,
|
| 2944 |
+
"normalized": false,
|
| 2945 |
+
"rstrip": false,
|
| 2946 |
+
"single_word": false,
|
| 2947 |
+
"special": true
|
| 2948 |
+
},
|
| 2949 |
+
"370": {
|
| 2950 |
+
"content": "<|reserved_360|>",
|
| 2951 |
+
"lstrip": false,
|
| 2952 |
+
"normalized": false,
|
| 2953 |
+
"rstrip": false,
|
| 2954 |
+
"single_word": false,
|
| 2955 |
+
"special": true
|
| 2956 |
+
},
|
| 2957 |
+
"371": {
|
| 2958 |
+
"content": "<|reserved_361|>",
|
| 2959 |
+
"lstrip": false,
|
| 2960 |
+
"normalized": false,
|
| 2961 |
+
"rstrip": false,
|
| 2962 |
+
"single_word": false,
|
| 2963 |
+
"special": true
|
| 2964 |
+
},
|
| 2965 |
+
"372": {
|
| 2966 |
+
"content": "<|reserved_362|>",
|
| 2967 |
+
"lstrip": false,
|
| 2968 |
+
"normalized": false,
|
| 2969 |
+
"rstrip": false,
|
| 2970 |
+
"single_word": false,
|
| 2971 |
+
"special": true
|
| 2972 |
+
},
|
| 2973 |
+
"373": {
|
| 2974 |
+
"content": "<|reserved_363|>",
|
| 2975 |
+
"lstrip": false,
|
| 2976 |
+
"normalized": false,
|
| 2977 |
+
"rstrip": false,
|
| 2978 |
+
"single_word": false,
|
| 2979 |
+
"special": true
|
| 2980 |
+
},
|
| 2981 |
+
"374": {
|
| 2982 |
+
"content": "<|reserved_364|>",
|
| 2983 |
+
"lstrip": false,
|
| 2984 |
+
"normalized": false,
|
| 2985 |
+
"rstrip": false,
|
| 2986 |
+
"single_word": false,
|
| 2987 |
+
"special": true
|
| 2988 |
+
},
|
| 2989 |
+
"375": {
|
| 2990 |
+
"content": "<|reserved_365|>",
|
| 2991 |
+
"lstrip": false,
|
| 2992 |
+
"normalized": false,
|
| 2993 |
+
"rstrip": false,
|
| 2994 |
+
"single_word": false,
|
| 2995 |
+
"special": true
|
| 2996 |
+
},
|
| 2997 |
+
"376": {
|
| 2998 |
+
"content": "<|reserved_366|>",
|
| 2999 |
+
"lstrip": false,
|
| 3000 |
+
"normalized": false,
|
| 3001 |
+
"rstrip": false,
|
| 3002 |
+
"single_word": false,
|
| 3003 |
+
"special": true
|
| 3004 |
+
},
|
| 3005 |
+
"377": {
|
| 3006 |
+
"content": "<|reserved_367|>",
|
| 3007 |
+
"lstrip": false,
|
| 3008 |
+
"normalized": false,
|
| 3009 |
+
"rstrip": false,
|
| 3010 |
+
"single_word": false,
|
| 3011 |
+
"special": true
|
| 3012 |
+
},
|
| 3013 |
+
"378": {
|
| 3014 |
+
"content": "<|reserved_368|>",
|
| 3015 |
+
"lstrip": false,
|
| 3016 |
+
"normalized": false,
|
| 3017 |
+
"rstrip": false,
|
| 3018 |
+
"single_word": false,
|
| 3019 |
+
"special": true
|
| 3020 |
+
},
|
| 3021 |
+
"379": {
|
| 3022 |
+
"content": "<|reserved_369|>",
|
| 3023 |
+
"lstrip": false,
|
| 3024 |
+
"normalized": false,
|
| 3025 |
+
"rstrip": false,
|
| 3026 |
+
"single_word": false,
|
| 3027 |
+
"special": true
|
| 3028 |
+
},
|
| 3029 |
+
"380": {
|
| 3030 |
+
"content": "<|reserved_370|>",
|
| 3031 |
+
"lstrip": false,
|
| 3032 |
+
"normalized": false,
|
| 3033 |
+
"rstrip": false,
|
| 3034 |
+
"single_word": false,
|
| 3035 |
+
"special": true
|
| 3036 |
+
},
|
| 3037 |
+
"381": {
|
| 3038 |
+
"content": "<|reserved_371|>",
|
| 3039 |
+
"lstrip": false,
|
| 3040 |
+
"normalized": false,
|
| 3041 |
+
"rstrip": false,
|
| 3042 |
+
"single_word": false,
|
| 3043 |
+
"special": true
|
| 3044 |
+
},
|
| 3045 |
+
"382": {
|
| 3046 |
+
"content": "<|reserved_372|>",
|
| 3047 |
+
"lstrip": false,
|
| 3048 |
+
"normalized": false,
|
| 3049 |
+
"rstrip": false,
|
| 3050 |
+
"single_word": false,
|
| 3051 |
+
"special": true
|
| 3052 |
+
},
|
| 3053 |
+
"383": {
|
| 3054 |
+
"content": "<|reserved_373|>",
|
| 3055 |
+
"lstrip": false,
|
| 3056 |
+
"normalized": false,
|
| 3057 |
+
"rstrip": false,
|
| 3058 |
+
"single_word": false,
|
| 3059 |
+
"special": true
|
| 3060 |
+
},
|
| 3061 |
+
"384": {
|
| 3062 |
+
"content": "<|reserved_374|>",
|
| 3063 |
+
"lstrip": false,
|
| 3064 |
+
"normalized": false,
|
| 3065 |
+
"rstrip": false,
|
| 3066 |
+
"single_word": false,
|
| 3067 |
+
"special": true
|
| 3068 |
+
},
|
| 3069 |
+
"385": {
|
| 3070 |
+
"content": "<|reserved_375|>",
|
| 3071 |
+
"lstrip": false,
|
| 3072 |
+
"normalized": false,
|
| 3073 |
+
"rstrip": false,
|
| 3074 |
+
"single_word": false,
|
| 3075 |
+
"special": true
|
| 3076 |
+
},
|
| 3077 |
+
"386": {
|
| 3078 |
+
"content": "<|reserved_376|>",
|
| 3079 |
+
"lstrip": false,
|
| 3080 |
+
"normalized": false,
|
| 3081 |
+
"rstrip": false,
|
| 3082 |
+
"single_word": false,
|
| 3083 |
+
"special": true
|
| 3084 |
+
},
|
| 3085 |
+
"387": {
|
| 3086 |
+
"content": "<|reserved_377|>",
|
| 3087 |
+
"lstrip": false,
|
| 3088 |
+
"normalized": false,
|
| 3089 |
+
"rstrip": false,
|
| 3090 |
+
"single_word": false,
|
| 3091 |
+
"special": true
|
| 3092 |
+
},
|
| 3093 |
+
"388": {
|
| 3094 |
+
"content": "<|reserved_378|>",
|
| 3095 |
+
"lstrip": false,
|
| 3096 |
+
"normalized": false,
|
| 3097 |
+
"rstrip": false,
|
| 3098 |
+
"single_word": false,
|
| 3099 |
+
"special": true
|
| 3100 |
+
},
|
| 3101 |
+
"389": {
|
| 3102 |
+
"content": "<|reserved_379|>",
|
| 3103 |
+
"lstrip": false,
|
| 3104 |
+
"normalized": false,
|
| 3105 |
+
"rstrip": false,
|
| 3106 |
+
"single_word": false,
|
| 3107 |
+
"special": true
|
| 3108 |
+
},
|
| 3109 |
+
"390": {
|
| 3110 |
+
"content": "<|reserved_380|>",
|
| 3111 |
+
"lstrip": false,
|
| 3112 |
+
"normalized": false,
|
| 3113 |
+
"rstrip": false,
|
| 3114 |
+
"single_word": false,
|
| 3115 |
+
"special": true
|
| 3116 |
+
},
|
| 3117 |
+
"391": {
|
| 3118 |
+
"content": "<|reserved_381|>",
|
| 3119 |
+
"lstrip": false,
|
| 3120 |
+
"normalized": false,
|
| 3121 |
+
"rstrip": false,
|
| 3122 |
+
"single_word": false,
|
| 3123 |
+
"special": true
|
| 3124 |
+
},
|
| 3125 |
+
"392": {
|
| 3126 |
+
"content": "<|reserved_382|>",
|
| 3127 |
+
"lstrip": false,
|
| 3128 |
+
"normalized": false,
|
| 3129 |
+
"rstrip": false,
|
| 3130 |
+
"single_word": false,
|
| 3131 |
+
"special": true
|
| 3132 |
+
},
|
| 3133 |
+
"393": {
|
| 3134 |
+
"content": "<|reserved_383|>",
|
| 3135 |
+
"lstrip": false,
|
| 3136 |
+
"normalized": false,
|
| 3137 |
+
"rstrip": false,
|
| 3138 |
+
"single_word": false,
|
| 3139 |
+
"special": true
|
| 3140 |
+
},
|
| 3141 |
+
"394": {
|
| 3142 |
+
"content": "<|reserved_384|>",
|
| 3143 |
+
"lstrip": false,
|
| 3144 |
+
"normalized": false,
|
| 3145 |
+
"rstrip": false,
|
| 3146 |
+
"single_word": false,
|
| 3147 |
+
"special": true
|
| 3148 |
+
},
|
| 3149 |
+
"395": {
|
| 3150 |
+
"content": "<|reserved_385|>",
|
| 3151 |
+
"lstrip": false,
|
| 3152 |
+
"normalized": false,
|
| 3153 |
+
"rstrip": false,
|
| 3154 |
+
"single_word": false,
|
| 3155 |
+
"special": true
|
| 3156 |
+
},
|
| 3157 |
+
"396": {
|
| 3158 |
+
"content": "<image>",
|
| 3159 |
+
"lstrip": false,
|
| 3160 |
+
"normalized": false,
|
| 3161 |
+
"rstrip": false,
|
| 3162 |
+
"single_word": false,
|
| 3163 |
+
"special": true
|
| 3164 |
+
},
|
| 3165 |
+
"397": {
|
| 3166 |
+
"content": "<|img_row_1_col_1|>",
|
| 3167 |
+
"lstrip": false,
|
| 3168 |
+
"normalized": false,
|
| 3169 |
+
"rstrip": false,
|
| 3170 |
+
"single_word": false,
|
| 3171 |
+
"special": true
|
| 3172 |
+
},
|
| 3173 |
+
"398": {
|
| 3174 |
+
"content": "<|img_row_1_col_2|>",
|
| 3175 |
+
"lstrip": false,
|
| 3176 |
+
"normalized": false,
|
| 3177 |
+
"rstrip": false,
|
| 3178 |
+
"single_word": false,
|
| 3179 |
+
"special": true
|
| 3180 |
+
},
|
| 3181 |
+
"399": {
|
| 3182 |
+
"content": "<|img_row_1_col_3|>",
|
| 3183 |
+
"lstrip": false,
|
| 3184 |
+
"normalized": false,
|
| 3185 |
+
"rstrip": false,
|
| 3186 |
+
"single_word": false,
|
| 3187 |
+
"special": true
|
| 3188 |
+
},
|
| 3189 |
+
"400": {
|
| 3190 |
+
"content": "<|img_row_1_col_4|>",
|
| 3191 |
+
"lstrip": false,
|
| 3192 |
+
"normalized": false,
|
| 3193 |
+
"rstrip": false,
|
| 3194 |
+
"single_word": false,
|
| 3195 |
+
"special": true
|
| 3196 |
+
},
|
| 3197 |
+
"401": {
|
| 3198 |
+
"content": "<|img_row_1_col_5|>",
|
| 3199 |
+
"lstrip": false,
|
| 3200 |
+
"normalized": false,
|
| 3201 |
+
"rstrip": false,
|
| 3202 |
+
"single_word": false,
|
| 3203 |
+
"special": true
|
| 3204 |
+
},
|
| 3205 |
+
"402": {
|
| 3206 |
+
"content": "<|img_row_1_col_6|>",
|
| 3207 |
+
"lstrip": false,
|
| 3208 |
+
"normalized": false,
|
| 3209 |
+
"rstrip": false,
|
| 3210 |
+
"single_word": false,
|
| 3211 |
+
"special": true
|
| 3212 |
+
},
|
| 3213 |
+
"403": {
|
| 3214 |
+
"content": "<|img_row_1_col_7|>",
|
| 3215 |
+
"lstrip": false,
|
| 3216 |
+
"normalized": false,
|
| 3217 |
+
"rstrip": false,
|
| 3218 |
+
"single_word": false,
|
| 3219 |
+
"special": true
|
| 3220 |
+
},
|
| 3221 |
+
"404": {
|
| 3222 |
+
"content": "<|img_row_1_col_8|>",
|
| 3223 |
+
"lstrip": false,
|
| 3224 |
+
"normalized": false,
|
| 3225 |
+
"rstrip": false,
|
| 3226 |
+
"single_word": false,
|
| 3227 |
+
"special": true
|
| 3228 |
+
},
|
| 3229 |
+
"405": {
|
| 3230 |
+
"content": "<|img_row_1_col_9|>",
|
| 3231 |
+
"lstrip": false,
|
| 3232 |
+
"normalized": false,
|
| 3233 |
+
"rstrip": false,
|
| 3234 |
+
"single_word": false,
|
| 3235 |
+
"special": true
|
| 3236 |
+
},
|
| 3237 |
+
"406": {
|
| 3238 |
+
"content": "<|img_row_1_col_10|>",
|
| 3239 |
+
"lstrip": false,
|
| 3240 |
+
"normalized": false,
|
| 3241 |
+
"rstrip": false,
|
| 3242 |
+
"single_word": false,
|
| 3243 |
+
"special": true
|
| 3244 |
+
},
|
| 3245 |
+
"407": {
|
| 3246 |
+
"content": "<|img_row_2_col_1|>",
|
| 3247 |
+
"lstrip": false,
|
| 3248 |
+
"normalized": false,
|
| 3249 |
+
"rstrip": false,
|
| 3250 |
+
"single_word": false,
|
| 3251 |
+
"special": true
|
| 3252 |
+
},
|
| 3253 |
+
"408": {
|
| 3254 |
+
"content": "<|img_row_2_col_2|>",
|
| 3255 |
+
"lstrip": false,
|
| 3256 |
+
"normalized": false,
|
| 3257 |
+
"rstrip": false,
|
| 3258 |
+
"single_word": false,
|
| 3259 |
+
"special": true
|
| 3260 |
+
},
|
| 3261 |
+
"409": {
|
| 3262 |
+
"content": "<|img_row_2_col_3|>",
|
| 3263 |
+
"lstrip": false,
|
| 3264 |
+
"normalized": false,
|
| 3265 |
+
"rstrip": false,
|
| 3266 |
+
"single_word": false,
|
| 3267 |
+
"special": true
|
| 3268 |
+
},
|
| 3269 |
+
"410": {
|
| 3270 |
+
"content": "<|img_row_2_col_4|>",
|
| 3271 |
+
"lstrip": false,
|
| 3272 |
+
"normalized": false,
|
| 3273 |
+
"rstrip": false,
|
| 3274 |
+
"single_word": false,
|
| 3275 |
+
"special": true
|
| 3276 |
+
},
|
| 3277 |
+
"411": {
|
| 3278 |
+
"content": "<|img_row_2_col_5|>",
|
| 3279 |
+
"lstrip": false,
|
| 3280 |
+
"normalized": false,
|
| 3281 |
+
"rstrip": false,
|
| 3282 |
+
"single_word": false,
|
| 3283 |
+
"special": true
|
| 3284 |
+
},
|
| 3285 |
+
"412": {
|
| 3286 |
+
"content": "<|img_row_2_col_6|>",
|
| 3287 |
+
"lstrip": false,
|
| 3288 |
+
"normalized": false,
|
| 3289 |
+
"rstrip": false,
|
| 3290 |
+
"single_word": false,
|
| 3291 |
+
"special": true
|
| 3292 |
+
},
|
| 3293 |
+
"413": {
|
| 3294 |
+
"content": "<|img_row_2_col_7|>",
|
| 3295 |
+
"lstrip": false,
|
| 3296 |
+
"normalized": false,
|
| 3297 |
+
"rstrip": false,
|
| 3298 |
+
"single_word": false,
|
| 3299 |
+
"special": true
|
| 3300 |
+
},
|
| 3301 |
+
"414": {
|
| 3302 |
+
"content": "<|img_row_2_col_8|>",
|
| 3303 |
+
"lstrip": false,
|
| 3304 |
+
"normalized": false,
|
| 3305 |
+
"rstrip": false,
|
| 3306 |
+
"single_word": false,
|
| 3307 |
+
"special": true
|
| 3308 |
+
},
|
| 3309 |
+
"415": {
|
| 3310 |
+
"content": "<|img_row_2_col_9|>",
|
| 3311 |
+
"lstrip": false,
|
| 3312 |
+
"normalized": false,
|
| 3313 |
+
"rstrip": false,
|
| 3314 |
+
"single_word": false,
|
| 3315 |
+
"special": true
|
| 3316 |
+
},
|
| 3317 |
+
"416": {
|
| 3318 |
+
"content": "<|img_row_2_col_10|>",
|
| 3319 |
+
"lstrip": false,
|
| 3320 |
+
"normalized": false,
|
| 3321 |
+
"rstrip": false,
|
| 3322 |
+
"single_word": false,
|
| 3323 |
+
"special": true
|
| 3324 |
+
},
|
| 3325 |
+
"417": {
|
| 3326 |
+
"content": "<|img_row_3_col_1|>",
|
| 3327 |
+
"lstrip": false,
|
| 3328 |
+
"normalized": false,
|
| 3329 |
+
"rstrip": false,
|
| 3330 |
+
"single_word": false,
|
| 3331 |
+
"special": true
|
| 3332 |
+
},
|
| 3333 |
+
"418": {
|
| 3334 |
+
"content": "<|img_row_3_col_2|>",
|
| 3335 |
+
"lstrip": false,
|
| 3336 |
+
"normalized": false,
|
| 3337 |
+
"rstrip": false,
|
| 3338 |
+
"single_word": false,
|
| 3339 |
+
"special": true
|
| 3340 |
+
},
|
| 3341 |
+
"419": {
|
| 3342 |
+
"content": "<|img_row_3_col_3|>",
|
| 3343 |
+
"lstrip": false,
|
| 3344 |
+
"normalized": false,
|
| 3345 |
+
"rstrip": false,
|
| 3346 |
+
"single_word": false,
|
| 3347 |
+
"special": true
|
| 3348 |
+
},
|
| 3349 |
+
"420": {
|
| 3350 |
+
"content": "<|img_row_3_col_4|>",
|
| 3351 |
+
"lstrip": false,
|
| 3352 |
+
"normalized": false,
|
| 3353 |
+
"rstrip": false,
|
| 3354 |
+
"single_word": false,
|
| 3355 |
+
"special": true
|
| 3356 |
+
},
|
| 3357 |
+
"421": {
|
| 3358 |
+
"content": "<|img_row_3_col_5|>",
|
| 3359 |
+
"lstrip": false,
|
| 3360 |
+
"normalized": false,
|
| 3361 |
+
"rstrip": false,
|
| 3362 |
+
"single_word": false,
|
| 3363 |
+
"special": true
|
| 3364 |
+
},
|
| 3365 |
+
"422": {
|
| 3366 |
+
"content": "<|img_row_3_col_6|>",
|
| 3367 |
+
"lstrip": false,
|
| 3368 |
+
"normalized": false,
|
| 3369 |
+
"rstrip": false,
|
| 3370 |
+
"single_word": false,
|
| 3371 |
+
"special": true
|
| 3372 |
+
},
|
| 3373 |
+
"423": {
|
| 3374 |
+
"content": "<|img_row_3_col_7|>",
|
| 3375 |
+
"lstrip": false,
|
| 3376 |
+
"normalized": false,
|
| 3377 |
+
"rstrip": false,
|
| 3378 |
+
"single_word": false,
|
| 3379 |
+
"special": true
|
| 3380 |
+
},
|
| 3381 |
+
"424": {
|
| 3382 |
+
"content": "<|img_row_3_col_8|>",
|
| 3383 |
+
"lstrip": false,
|
| 3384 |
+
"normalized": false,
|
| 3385 |
+
"rstrip": false,
|
| 3386 |
+
"single_word": false,
|
| 3387 |
+
"special": true
|
| 3388 |
+
},
|
| 3389 |
+
"425": {
|
| 3390 |
+
"content": "<|img_row_3_col_9|>",
|
| 3391 |
+
"lstrip": false,
|
| 3392 |
+
"normalized": false,
|
| 3393 |
+
"rstrip": false,
|
| 3394 |
+
"single_word": false,
|
| 3395 |
+
"special": true
|
| 3396 |
+
},
|
| 3397 |
+
"426": {
|
| 3398 |
+
"content": "<|img_row_3_col_10|>",
|
| 3399 |
+
"lstrip": false,
|
| 3400 |
+
"normalized": false,
|
| 3401 |
+
"rstrip": false,
|
| 3402 |
+
"single_word": false,
|
| 3403 |
+
"special": true
|
| 3404 |
+
},
|
| 3405 |
+
"427": {
|
| 3406 |
+
"content": "<|img_row_4_col_1|>",
|
| 3407 |
+
"lstrip": false,
|
| 3408 |
+
"normalized": false,
|
| 3409 |
+
"rstrip": false,
|
| 3410 |
+
"single_word": false,
|
| 3411 |
+
"special": true
|
| 3412 |
+
},
|
| 3413 |
+
"428": {
|
| 3414 |
+
"content": "<|img_row_4_col_2|>",
|
| 3415 |
+
"lstrip": false,
|
| 3416 |
+
"normalized": false,
|
| 3417 |
+
"rstrip": false,
|
| 3418 |
+
"single_word": false,
|
| 3419 |
+
"special": true
|
| 3420 |
+
},
|
| 3421 |
+
"429": {
|
| 3422 |
+
"content": "<|img_row_4_col_3|>",
|
| 3423 |
+
"lstrip": false,
|
| 3424 |
+
"normalized": false,
|
| 3425 |
+
"rstrip": false,
|
| 3426 |
+
"single_word": false,
|
| 3427 |
+
"special": true
|
| 3428 |
+
},
|
| 3429 |
+
"430": {
|
| 3430 |
+
"content": "<|img_row_4_col_4|>",
|
| 3431 |
+
"lstrip": false,
|
| 3432 |
+
"normalized": false,
|
| 3433 |
+
"rstrip": false,
|
| 3434 |
+
"single_word": false,
|
| 3435 |
+
"special": true
|
| 3436 |
+
},
|
| 3437 |
+
"431": {
|
| 3438 |
+
"content": "<|img_row_4_col_5|>",
|
| 3439 |
+
"lstrip": false,
|
| 3440 |
+
"normalized": false,
|
| 3441 |
+
"rstrip": false,
|
| 3442 |
+
"single_word": false,
|
| 3443 |
+
"special": true
|
| 3444 |
+
},
|
| 3445 |
+
"432": {
|
| 3446 |
+
"content": "<|img_row_4_col_6|>",
|
| 3447 |
+
"lstrip": false,
|
| 3448 |
+
"normalized": false,
|
| 3449 |
+
"rstrip": false,
|
| 3450 |
+
"single_word": false,
|
| 3451 |
+
"special": true
|
| 3452 |
+
},
|
| 3453 |
+
"433": {
|
| 3454 |
+
"content": "<|img_row_4_col_7|>",
|
| 3455 |
+
"lstrip": false,
|
| 3456 |
+
"normalized": false,
|
| 3457 |
+
"rstrip": false,
|
| 3458 |
+
"single_word": false,
|
| 3459 |
+
"special": true
|
| 3460 |
+
},
|
| 3461 |
+
"434": {
|
| 3462 |
+
"content": "<|img_row_4_col_8|>",
|
| 3463 |
+
"lstrip": false,
|
| 3464 |
+
"normalized": false,
|
| 3465 |
+
"rstrip": false,
|
| 3466 |
+
"single_word": false,
|
| 3467 |
+
"special": true
|
| 3468 |
+
},
|
| 3469 |
+
"435": {
|
| 3470 |
+
"content": "<|img_row_4_col_9|>",
|
| 3471 |
+
"lstrip": false,
|
| 3472 |
+
"normalized": false,
|
| 3473 |
+
"rstrip": false,
|
| 3474 |
+
"single_word": false,
|
| 3475 |
+
"special": true
|
| 3476 |
+
},
|
| 3477 |
+
"436": {
|
| 3478 |
+
"content": "<|img_row_4_col_10|>",
|
| 3479 |
+
"lstrip": false,
|
| 3480 |
+
"normalized": false,
|
| 3481 |
+
"rstrip": false,
|
| 3482 |
+
"single_word": false,
|
| 3483 |
+
"special": true
|
| 3484 |
+
},
|
| 3485 |
+
"437": {
|
| 3486 |
+
"content": "<|img_row_5_col_1|>",
|
| 3487 |
+
"lstrip": false,
|
| 3488 |
+
"normalized": false,
|
| 3489 |
+
"rstrip": false,
|
| 3490 |
+
"single_word": false,
|
| 3491 |
+
"special": true
|
| 3492 |
+
},
|
| 3493 |
+
"438": {
|
| 3494 |
+
"content": "<|img_row_5_col_2|>",
|
| 3495 |
+
"lstrip": false,
|
| 3496 |
+
"normalized": false,
|
| 3497 |
+
"rstrip": false,
|
| 3498 |
+
"single_word": false,
|
| 3499 |
+
"special": true
|
| 3500 |
+
},
|
| 3501 |
+
"439": {
|
| 3502 |
+
"content": "<|img_row_5_col_3|>",
|
| 3503 |
+
"lstrip": false,
|
| 3504 |
+
"normalized": false,
|
| 3505 |
+
"rstrip": false,
|
| 3506 |
+
"single_word": false,
|
| 3507 |
+
"special": true
|
| 3508 |
+
},
|
| 3509 |
+
"440": {
|
| 3510 |
+
"content": "<|img_row_5_col_4|>",
|
| 3511 |
+
"lstrip": false,
|
| 3512 |
+
"normalized": false,
|
| 3513 |
+
"rstrip": false,
|
| 3514 |
+
"single_word": false,
|
| 3515 |
+
"special": true
|
| 3516 |
+
},
|
| 3517 |
+
"441": {
|
| 3518 |
+
"content": "<|img_row_5_col_5|>",
|
| 3519 |
+
"lstrip": false,
|
| 3520 |
+
"normalized": false,
|
| 3521 |
+
"rstrip": false,
|
| 3522 |
+
"single_word": false,
|
| 3523 |
+
"special": true
|
| 3524 |
+
},
|
| 3525 |
+
"442": {
|
| 3526 |
+
"content": "<|img_row_5_col_6|>",
|
| 3527 |
+
"lstrip": false,
|
| 3528 |
+
"normalized": false,
|
| 3529 |
+
"rstrip": false,
|
| 3530 |
+
"single_word": false,
|
| 3531 |
+
"special": true
|
| 3532 |
+
},
|
| 3533 |
+
"443": {
|
| 3534 |
+
"content": "<|img_row_5_col_7|>",
|
| 3535 |
+
"lstrip": false,
|
| 3536 |
+
"normalized": false,
|
| 3537 |
+
"rstrip": false,
|
| 3538 |
+
"single_word": false,
|
| 3539 |
+
"special": true
|
| 3540 |
+
},
|
| 3541 |
+
"444": {
|
| 3542 |
+
"content": "<|img_row_5_col_8|>",
|
| 3543 |
+
"lstrip": false,
|
| 3544 |
+
"normalized": false,
|
| 3545 |
+
"rstrip": false,
|
| 3546 |
+
"single_word": false,
|
| 3547 |
+
"special": true
|
| 3548 |
+
},
|
| 3549 |
+
"445": {
|
| 3550 |
+
"content": "<|img_row_5_col_9|>",
|
| 3551 |
+
"lstrip": false,
|
| 3552 |
+
"normalized": false,
|
| 3553 |
+
"rstrip": false,
|
| 3554 |
+
"single_word": false,
|
| 3555 |
+
"special": true
|
| 3556 |
+
},
|
| 3557 |
+
"446": {
|
| 3558 |
+
"content": "<|img_row_5_col_10|>",
|
| 3559 |
+
"lstrip": false,
|
| 3560 |
+
"normalized": false,
|
| 3561 |
+
"rstrip": false,
|
| 3562 |
+
"single_word": false,
|
| 3563 |
+
"special": true
|
| 3564 |
+
},
|
| 3565 |
+
"447": {
|
| 3566 |
+
"content": "<|img_row_6_col_1|>",
|
| 3567 |
+
"lstrip": false,
|
| 3568 |
+
"normalized": false,
|
| 3569 |
+
"rstrip": false,
|
| 3570 |
+
"single_word": false,
|
| 3571 |
+
"special": true
|
| 3572 |
+
},
|
| 3573 |
+
"448": {
|
| 3574 |
+
"content": "<|img_row_6_col_2|>",
|
| 3575 |
+
"lstrip": false,
|
| 3576 |
+
"normalized": false,
|
| 3577 |
+
"rstrip": false,
|
| 3578 |
+
"single_word": false,
|
| 3579 |
+
"special": true
|
| 3580 |
+
},
|
| 3581 |
+
"449": {
|
| 3582 |
+
"content": "<|img_row_6_col_3|>",
|
| 3583 |
+
"lstrip": false,
|
| 3584 |
+
"normalized": false,
|
| 3585 |
+
"rstrip": false,
|
| 3586 |
+
"single_word": false,
|
| 3587 |
+
"special": true
|
| 3588 |
+
},
|
| 3589 |
+
"450": {
|
| 3590 |
+
"content": "<|img_row_6_col_4|>",
|
| 3591 |
+
"lstrip": false,
|
| 3592 |
+
"normalized": false,
|
| 3593 |
+
"rstrip": false,
|
| 3594 |
+
"single_word": false,
|
| 3595 |
+
"special": true
|
| 3596 |
+
},
|
| 3597 |
+
"451": {
|
| 3598 |
+
"content": "<|img_row_6_col_5|>",
|
| 3599 |
+
"lstrip": false,
|
| 3600 |
+
"normalized": false,
|
| 3601 |
+
"rstrip": false,
|
| 3602 |
+
"single_word": false,
|
| 3603 |
+
"special": true
|
| 3604 |
+
},
|
| 3605 |
+
"452": {
|
| 3606 |
+
"content": "<|img_row_6_col_6|>",
|
| 3607 |
+
"lstrip": false,
|
| 3608 |
+
"normalized": false,
|
| 3609 |
+
"rstrip": false,
|
| 3610 |
+
"single_word": false,
|
| 3611 |
+
"special": true
|
| 3612 |
+
},
|
| 3613 |
+
"453": {
|
| 3614 |
+
"content": "<|img_row_6_col_7|>",
|
| 3615 |
+
"lstrip": false,
|
| 3616 |
+
"normalized": false,
|
| 3617 |
+
"rstrip": false,
|
| 3618 |
+
"single_word": false,
|
| 3619 |
+
"special": true
|
| 3620 |
+
},
|
| 3621 |
+
"454": {
|
| 3622 |
+
"content": "<|img_row_6_col_8|>",
|
| 3623 |
+
"lstrip": false,
|
| 3624 |
+
"normalized": false,
|
| 3625 |
+
"rstrip": false,
|
| 3626 |
+
"single_word": false,
|
| 3627 |
+
"special": true
|
| 3628 |
+
},
|
| 3629 |
+
"455": {
|
| 3630 |
+
"content": "<|img_row_6_col_9|>",
|
| 3631 |
+
"lstrip": false,
|
| 3632 |
+
"normalized": false,
|
| 3633 |
+
"rstrip": false,
|
| 3634 |
+
"single_word": false,
|
| 3635 |
+
"special": true
|
| 3636 |
+
},
|
| 3637 |
+
"456": {
|
| 3638 |
+
"content": "<|img_row_6_col_10|>",
|
| 3639 |
+
"lstrip": false,
|
| 3640 |
+
"normalized": false,
|
| 3641 |
+
"rstrip": false,
|
| 3642 |
+
"single_word": false,
|
| 3643 |
+
"special": true
|
| 3644 |
+
},
|
| 3645 |
+
"457": {
|
| 3646 |
+
"content": "<|img_row_7_col_1|>",
|
| 3647 |
+
"lstrip": false,
|
| 3648 |
+
"normalized": false,
|
| 3649 |
+
"rstrip": false,
|
| 3650 |
+
"single_word": false,
|
| 3651 |
+
"special": true
|
| 3652 |
+
},
|
| 3653 |
+
"458": {
|
| 3654 |
+
"content": "<|img_row_7_col_2|>",
|
| 3655 |
+
"lstrip": false,
|
| 3656 |
+
"normalized": false,
|
| 3657 |
+
"rstrip": false,
|
| 3658 |
+
"single_word": false,
|
| 3659 |
+
"special": true
|
| 3660 |
+
},
|
| 3661 |
+
"459": {
|
| 3662 |
+
"content": "<|img_row_7_col_3|>",
|
| 3663 |
+
"lstrip": false,
|
| 3664 |
+
"normalized": false,
|
| 3665 |
+
"rstrip": false,
|
| 3666 |
+
"single_word": false,
|
| 3667 |
+
"special": true
|
| 3668 |
+
},
|
| 3669 |
+
"460": {
|
| 3670 |
+
"content": "<|img_row_7_col_4|>",
|
| 3671 |
+
"lstrip": false,
|
| 3672 |
+
"normalized": false,
|
| 3673 |
+
"rstrip": false,
|
| 3674 |
+
"single_word": false,
|
| 3675 |
+
"special": true
|
| 3676 |
+
},
|
| 3677 |
+
"461": {
|
| 3678 |
+
"content": "<|img_row_7_col_5|>",
|
| 3679 |
+
"lstrip": false,
|
| 3680 |
+
"normalized": false,
|
| 3681 |
+
"rstrip": false,
|
| 3682 |
+
"single_word": false,
|
| 3683 |
+
"special": true
|
| 3684 |
+
},
|
| 3685 |
+
"462": {
|
| 3686 |
+
"content": "<|img_row_7_col_6|>",
|
| 3687 |
+
"lstrip": false,
|
| 3688 |
+
"normalized": false,
|
| 3689 |
+
"rstrip": false,
|
| 3690 |
+
"single_word": false,
|
| 3691 |
+
"special": true
|
| 3692 |
+
},
|
| 3693 |
+
"463": {
|
| 3694 |
+
"content": "<|img_row_7_col_7|>",
|
| 3695 |
+
"lstrip": false,
|
| 3696 |
+
"normalized": false,
|
| 3697 |
+
"rstrip": false,
|
| 3698 |
+
"single_word": false,
|
| 3699 |
+
"special": true
|
| 3700 |
+
},
|
| 3701 |
+
"464": {
|
| 3702 |
+
"content": "<|img_row_7_col_8|>",
|
| 3703 |
+
"lstrip": false,
|
| 3704 |
+
"normalized": false,
|
| 3705 |
+
"rstrip": false,
|
| 3706 |
+
"single_word": false,
|
| 3707 |
+
"special": true
|
| 3708 |
+
},
|
| 3709 |
+
"465": {
|
| 3710 |
+
"content": "<|img_row_7_col_9|>",
|
| 3711 |
+
"lstrip": false,
|
| 3712 |
+
"normalized": false,
|
| 3713 |
+
"rstrip": false,
|
| 3714 |
+
"single_word": false,
|
| 3715 |
+
"special": true
|
| 3716 |
+
},
|
| 3717 |
+
"466": {
|
| 3718 |
+
"content": "<|img_row_7_col_10|>",
|
| 3719 |
+
"lstrip": false,
|
| 3720 |
+
"normalized": false,
|
| 3721 |
+
"rstrip": false,
|
| 3722 |
+
"single_word": false,
|
| 3723 |
+
"special": true
|
| 3724 |
+
},
|
| 3725 |
+
"467": {
|
| 3726 |
+
"content": "<|img_row_8_col_1|>",
|
| 3727 |
+
"lstrip": false,
|
| 3728 |
+
"normalized": false,
|
| 3729 |
+
"rstrip": false,
|
| 3730 |
+
"single_word": false,
|
| 3731 |
+
"special": true
|
| 3732 |
+
},
|
| 3733 |
+
"468": {
|
| 3734 |
+
"content": "<|img_row_8_col_2|>",
|
| 3735 |
+
"lstrip": false,
|
| 3736 |
+
"normalized": false,
|
| 3737 |
+
"rstrip": false,
|
| 3738 |
+
"single_word": false,
|
| 3739 |
+
"special": true
|
| 3740 |
+
},
|
| 3741 |
+
"469": {
|
| 3742 |
+
"content": "<|img_row_8_col_3|>",
|
| 3743 |
+
"lstrip": false,
|
| 3744 |
+
"normalized": false,
|
| 3745 |
+
"rstrip": false,
|
| 3746 |
+
"single_word": false,
|
| 3747 |
+
"special": true
|
| 3748 |
+
},
|
| 3749 |
+
"470": {
|
| 3750 |
+
"content": "<|img_row_8_col_4|>",
|
| 3751 |
+
"lstrip": false,
|
| 3752 |
+
"normalized": false,
|
| 3753 |
+
"rstrip": false,
|
| 3754 |
+
"single_word": false,
|
| 3755 |
+
"special": true
|
| 3756 |
+
},
|
| 3757 |
+
"471": {
|
| 3758 |
+
"content": "<|img_row_8_col_5|>",
|
| 3759 |
+
"lstrip": false,
|
| 3760 |
+
"normalized": false,
|
| 3761 |
+
"rstrip": false,
|
| 3762 |
+
"single_word": false,
|
| 3763 |
+
"special": true
|
| 3764 |
+
},
|
| 3765 |
+
"472": {
|
| 3766 |
+
"content": "<|img_row_8_col_6|>",
|
| 3767 |
+
"lstrip": false,
|
| 3768 |
+
"normalized": false,
|
| 3769 |
+
"rstrip": false,
|
| 3770 |
+
"single_word": false,
|
| 3771 |
+
"special": true
|
| 3772 |
+
},
|
| 3773 |
+
"473": {
|
| 3774 |
+
"content": "<|img_row_8_col_7|>",
|
| 3775 |
+
"lstrip": false,
|
| 3776 |
+
"normalized": false,
|
| 3777 |
+
"rstrip": false,
|
| 3778 |
+
"single_word": false,
|
| 3779 |
+
"special": true
|
| 3780 |
+
},
|
| 3781 |
+
"474": {
|
| 3782 |
+
"content": "<|img_row_8_col_8|>",
|
| 3783 |
+
"lstrip": false,
|
| 3784 |
+
"normalized": false,
|
| 3785 |
+
"rstrip": false,
|
| 3786 |
+
"single_word": false,
|
| 3787 |
+
"special": true
|
| 3788 |
+
},
|
| 3789 |
+
"475": {
|
| 3790 |
+
"content": "<|img_row_8_col_9|>",
|
| 3791 |
+
"lstrip": false,
|
| 3792 |
+
"normalized": false,
|
| 3793 |
+
"rstrip": false,
|
| 3794 |
+
"single_word": false,
|
| 3795 |
+
"special": true
|
| 3796 |
+
},
|
| 3797 |
+
"476": {
|
| 3798 |
+
"content": "<|img_row_8_col_10|>",
|
| 3799 |
+
"lstrip": false,
|
| 3800 |
+
"normalized": false,
|
| 3801 |
+
"rstrip": false,
|
| 3802 |
+
"single_word": false,
|
| 3803 |
+
"special": true
|
| 3804 |
+
},
|
| 3805 |
+
"477": {
|
| 3806 |
+
"content": "<|img_row_9_col_1|>",
|
| 3807 |
+
"lstrip": false,
|
| 3808 |
+
"normalized": false,
|
| 3809 |
+
"rstrip": false,
|
| 3810 |
+
"single_word": false,
|
| 3811 |
+
"special": true
|
| 3812 |
+
},
|
| 3813 |
+
"478": {
|
| 3814 |
+
"content": "<|img_row_9_col_2|>",
|
| 3815 |
+
"lstrip": false,
|
| 3816 |
+
"normalized": false,
|
| 3817 |
+
"rstrip": false,
|
| 3818 |
+
"single_word": false,
|
| 3819 |
+
"special": true
|
| 3820 |
+
},
|
| 3821 |
+
"479": {
|
| 3822 |
+
"content": "<|img_row_9_col_3|>",
|
| 3823 |
+
"lstrip": false,
|
| 3824 |
+
"normalized": false,
|
| 3825 |
+
"rstrip": false,
|
| 3826 |
+
"single_word": false,
|
| 3827 |
+
"special": true
|
| 3828 |
+
},
|
| 3829 |
+
"480": {
|
| 3830 |
+
"content": "<|img_row_9_col_4|>",
|
| 3831 |
+
"lstrip": false,
|
| 3832 |
+
"normalized": false,
|
| 3833 |
+
"rstrip": false,
|
| 3834 |
+
"single_word": false,
|
| 3835 |
+
"special": true
|
| 3836 |
+
},
|
| 3837 |
+
"481": {
|
| 3838 |
+
"content": "<|img_row_9_col_5|>",
|
| 3839 |
+
"lstrip": false,
|
| 3840 |
+
"normalized": false,
|
| 3841 |
+
"rstrip": false,
|
| 3842 |
+
"single_word": false,
|
| 3843 |
+
"special": true
|
| 3844 |
+
},
|
| 3845 |
+
"482": {
|
| 3846 |
+
"content": "<|img_row_9_col_6|>",
|
| 3847 |
+
"lstrip": false,
|
| 3848 |
+
"normalized": false,
|
| 3849 |
+
"rstrip": false,
|
| 3850 |
+
"single_word": false,
|
| 3851 |
+
"special": true
|
| 3852 |
+
},
|
| 3853 |
+
"483": {
|
| 3854 |
+
"content": "<|img_row_9_col_7|>",
|
| 3855 |
+
"lstrip": false,
|
| 3856 |
+
"normalized": false,
|
| 3857 |
+
"rstrip": false,
|
| 3858 |
+
"single_word": false,
|
| 3859 |
+
"special": true
|
| 3860 |
+
},
|
| 3861 |
+
"484": {
|
| 3862 |
+
"content": "<|img_row_9_col_8|>",
|
| 3863 |
+
"lstrip": false,
|
| 3864 |
+
"normalized": false,
|
| 3865 |
+
"rstrip": false,
|
| 3866 |
+
"single_word": false,
|
| 3867 |
+
"special": true
|
| 3868 |
+
},
|
| 3869 |
+
"485": {
|
| 3870 |
+
"content": "<|img_row_9_col_9|>",
|
| 3871 |
+
"lstrip": false,
|
| 3872 |
+
"normalized": false,
|
| 3873 |
+
"rstrip": false,
|
| 3874 |
+
"single_word": false,
|
| 3875 |
+
"special": true
|
| 3876 |
+
},
|
| 3877 |
+
"486": {
|
| 3878 |
+
"content": "<|img_row_9_col_10|>",
|
| 3879 |
+
"lstrip": false,
|
| 3880 |
+
"normalized": false,
|
| 3881 |
+
"rstrip": false,
|
| 3882 |
+
"single_word": false,
|
| 3883 |
+
"special": true
|
| 3884 |
+
},
|
| 3885 |
+
"487": {
|
| 3886 |
+
"content": "<|img_row_10_col_1|>",
|
| 3887 |
+
"lstrip": false,
|
| 3888 |
+
"normalized": false,
|
| 3889 |
+
"rstrip": false,
|
| 3890 |
+
"single_word": false,
|
| 3891 |
+
"special": true
|
| 3892 |
+
},
|
| 3893 |
+
"488": {
|
| 3894 |
+
"content": "<|img_row_10_col_2|>",
|
| 3895 |
+
"lstrip": false,
|
| 3896 |
+
"normalized": false,
|
| 3897 |
+
"rstrip": false,
|
| 3898 |
+
"single_word": false,
|
| 3899 |
+
"special": true
|
| 3900 |
+
},
|
| 3901 |
+
"489": {
|
| 3902 |
+
"content": "<|img_row_10_col_3|>",
|
| 3903 |
+
"lstrip": false,
|
| 3904 |
+
"normalized": false,
|
| 3905 |
+
"rstrip": false,
|
| 3906 |
+
"single_word": false,
|
| 3907 |
+
"special": true
|
| 3908 |
+
},
|
| 3909 |
+
"490": {
|
| 3910 |
+
"content": "<|img_row_10_col_4|>",
|
| 3911 |
+
"lstrip": false,
|
| 3912 |
+
"normalized": false,
|
| 3913 |
+
"rstrip": false,
|
| 3914 |
+
"single_word": false,
|
| 3915 |
+
"special": true
|
| 3916 |
+
},
|
| 3917 |
+
"491": {
|
| 3918 |
+
"content": "<|img_row_10_col_5|>",
|
| 3919 |
+
"lstrip": false,
|
| 3920 |
+
"normalized": false,
|
| 3921 |
+
"rstrip": false,
|
| 3922 |
+
"single_word": false,
|
| 3923 |
+
"special": true
|
| 3924 |
+
},
|
| 3925 |
+
"492": {
|
| 3926 |
+
"content": "<|img_row_10_col_6|>",
|
| 3927 |
+
"lstrip": false,
|
| 3928 |
+
"normalized": false,
|
| 3929 |
+
"rstrip": false,
|
| 3930 |
+
"single_word": false,
|
| 3931 |
+
"special": true
|
| 3932 |
+
},
|
| 3933 |
+
"493": {
|
| 3934 |
+
"content": "<|img_row_10_col_7|>",
|
| 3935 |
+
"lstrip": false,
|
| 3936 |
+
"normalized": false,
|
| 3937 |
+
"rstrip": false,
|
| 3938 |
+
"single_word": false,
|
| 3939 |
+
"special": true
|
| 3940 |
+
},
|
| 3941 |
+
"494": {
|
| 3942 |
+
"content": "<|img_row_10_col_8|>",
|
| 3943 |
+
"lstrip": false,
|
| 3944 |
+
"normalized": false,
|
| 3945 |
+
"rstrip": false,
|
| 3946 |
+
"single_word": false,
|
| 3947 |
+
"special": true
|
| 3948 |
+
},
|
| 3949 |
+
"495": {
|
| 3950 |
+
"content": "<|img_row_10_col_9|>",
|
| 3951 |
+
"lstrip": false,
|
| 3952 |
+
"normalized": false,
|
| 3953 |
+
"rstrip": false,
|
| 3954 |
+
"single_word": false,
|
| 3955 |
+
"special": true
|
| 3956 |
+
},
|
| 3957 |
+
"496": {
|
| 3958 |
+
"content": "<|img_row_10_col_10|>",
|
| 3959 |
+
"lstrip": false,
|
| 3960 |
+
"normalized": false,
|
| 3961 |
+
"rstrip": false,
|
| 3962 |
+
"single_word": false,
|
| 3963 |
+
"special": true
|
| 3964 |
+
},
|
| 3965 |
+
"497": {
|
| 3966 |
+
"content": "<|img_thumbnail|>",
|
| 3967 |
+
"lstrip": false,
|
| 3968 |
+
"normalized": false,
|
| 3969 |
+
"rstrip": false,
|
| 3970 |
+
"single_word": false,
|
| 3971 |
+
"special": true
|
| 3972 |
+
},
|
| 3973 |
+
"498": {
|
| 3974 |
+
"content": "<|image_start|>",
|
| 3975 |
+
"lstrip": false,
|
| 3976 |
+
"normalized": false,
|
| 3977 |
+
"rstrip": false,
|
| 3978 |
+
"single_word": false,
|
| 3979 |
+
"special": true
|
| 3980 |
+
},
|
| 3981 |
+
"499": {
|
| 3982 |
+
"content": "<|image_end|>",
|
| 3983 |
+
"lstrip": false,
|
| 3984 |
+
"normalized": false,
|
| 3985 |
+
"rstrip": false,
|
| 3986 |
+
"single_word": false,
|
| 3987 |
+
"special": true
|
| 3988 |
+
},
|
| 3989 |
+
"500": {
|
| 3990 |
+
"content": "<|image_split|>",
|
| 3991 |
+
"lstrip": false,
|
| 3992 |
+
"normalized": false,
|
| 3993 |
+
"rstrip": false,
|
| 3994 |
+
"single_word": false,
|
| 3995 |
+
"special": true
|
| 3996 |
+
},
|
| 3997 |
+
"64011": {
|
| 3998 |
+
"content": "Mathias",
|
| 3999 |
+
"lstrip": false,
|
| 4000 |
+
"normalized": true,
|
| 4001 |
+
"rstrip": false,
|
| 4002 |
+
"single_word": false,
|
| 4003 |
+
"special": false
|
| 4004 |
+
},
|
| 4005 |
+
"64014": {
|
| 4006 |
+
"content": "python",
|
| 4007 |
+
"lstrip": false,
|
| 4008 |
+
"normalized": true,
|
| 4009 |
+
"rstrip": false,
|
| 4010 |
+
"single_word": false,
|
| 4011 |
+
"special": false
|
| 4012 |
+
},
|
| 4013 |
+
"64394": {
|
| 4014 |
+
"content": "<|cot_start|>",
|
| 4015 |
+
"lstrip": false,
|
| 4016 |
+
"normalized": false,
|
| 4017 |
+
"rstrip": false,
|
| 4018 |
+
"single_word": false,
|
| 4019 |
+
"special": true
|
| 4020 |
+
},
|
| 4021 |
+
"64395": {
|
| 4022 |
+
"content": "<|cot_end|>",
|
| 4023 |
+
"lstrip": false,
|
| 4024 |
+
"normalized": false,
|
| 4025 |
+
"rstrip": false,
|
| 4026 |
+
"single_word": false,
|
| 4027 |
+
"special": true
|
| 4028 |
+
},
|
| 4029 |
+
"64396": {
|
| 4030 |
+
"content": "<|review_start|>",
|
| 4031 |
+
"lstrip": false,
|
| 4032 |
+
"normalized": false,
|
| 4033 |
+
"rstrip": false,
|
| 4034 |
+
"single_word": false,
|
| 4035 |
+
"special": true
|
| 4036 |
+
},
|
| 4037 |
+
"64397": {
|
| 4038 |
+
"content": "<|review_end|>",
|
| 4039 |
+
"lstrip": false,
|
| 4040 |
+
"normalized": false,
|
| 4041 |
+
"rstrip": false,
|
| 4042 |
+
"single_word": false,
|
| 4043 |
+
"special": true
|
| 4044 |
+
},
|
| 4045 |
+
"64398": {
|
| 4046 |
+
"content": "<|file_start|>",
|
| 4047 |
+
"lstrip": false,
|
| 4048 |
+
"normalized": false,
|
| 4049 |
+
"rstrip": false,
|
| 4050 |
+
"single_word": false,
|
| 4051 |
+
"special": true
|
| 4052 |
+
},
|
| 4053 |
+
"64399": {
|
| 4054 |
+
"content": "<|file_end|>",
|
| 4055 |
+
"lstrip": false,
|
| 4056 |
+
"normalized": false,
|
| 4057 |
+
"rstrip": false,
|
| 4058 |
+
"single_word": false,
|
| 4059 |
+
"special": true
|
| 4060 |
+
}
|
| 4061 |
+
},
|
| 4062 |
+
"auto_map": {
|
| 4063 |
+
"AutoProcessor": "processing_lfm2_vl.Lfm2VlProcessor"
|
| 4064 |
+
},
|
| 4065 |
+
"bos_token": "<|startoftext|>",
|
| 4066 |
+
"clean_up_tokenization_spaces": true,
|
| 4067 |
+
"eos_token": "<|im_end|>",
|
| 4068 |
+
"extra_special_tokens": {
|
| 4069 |
+
"image_end_token": "<|image_end|>",
|
| 4070 |
+
"image_start_token": "<|image_start|>",
|
| 4071 |
+
"image_thumbnail": "<|img_thumbnail|>",
|
| 4072 |
+
"image_token": "<image>"
|
| 4073 |
+
},
|
| 4074 |
+
"image_end_token": "<|image_end|>",
|
| 4075 |
+
"image_start_token": "<|image_start|>",
|
| 4076 |
+
"image_thumbnail": "<|img_thumbnail|>",
|
| 4077 |
+
"image_token": "<image>",
|
| 4078 |
+
"legacy": false,
|
| 4079 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 4080 |
+
"pad_token": "<|pad|>",
|
| 4081 |
+
"processor_class": "Lfm2VlProcessor",
|
| 4082 |
+
"return_token_type_ids": false,
|
| 4083 |
+
"sp_model_kwargs": {},
|
| 4084 |
+
"spaces_between_special_tokens": false,
|
| 4085 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 4086 |
+
"use_default_system_prompt": false,
|
| 4087 |
+
"use_fast": true
|
| 4088 |
+
}
|