--- datasets: - instruction-pretrain/medicine-instruction-augmented-corpora - Open-Orca/OpenOrca - EleutherAI/pile - GAIR/lima - WizardLM/WizardLM_evol_instruct_V2_196k language: - en license: llama3 tags: - biology - medical - mlx library_name: mlx pipeline_tag: text-generation base_model: instruction-pretrain/medicine-Llama3-8B --- # mlx-community/Llama3-8B-Medicine-4bit This model [mlx-community/Llama3-8B-Medicine-4bit](https://huggingface.co/mlx-community/Llama3-8B-Medicine-4bit) was converted to MLX format from [instruction-pretrain/medicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama3-8B-Medicine-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```