Upload convert_mixtral_8x7b_to_4x7b_extract.ipynb
Browse files
notebook/convert_mixtral_8x7b_to_4x7b_extract.ipynb
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"metadata": {
|
7 |
+
"id": "hS2zWviCGv-j"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"model_name_or_path = \"mistralai/Mixtral-8x7B-Instruct-v0.1\"#@param {type:\"string\"}\n",
|
12 |
+
"experts_extract_bit = \"10101010\" #@param {type:\"string\"}\n",
|
13 |
+
"num_experts_per_tok = 2 #@param {type:\"integer\"}\n",
|
14 |
+
"\n",
|
15 |
+
"temp_dir = \"/content/drive/MyDrive/tf_models\" #@param {type:\"string\"}\n",
|
16 |
+
"model_name = model_name_or_path.split(\"/\")[-1]\n",
|
17 |
+
"target_dir = f\"{temp_dir}/{model_name}\"\n",
|
18 |
+
"save_dir = \"/content/drive/MyDrive/tf_models/mx4x7b_x3\" #@param {type:\"string\"}\n",
|
19 |
+
"\n",
|
20 |
+
"\n",
|
21 |
+
"experts_indexies = [i for i, bit in enumerate(experts_extract_bit) if bit == '1']\n",
|
22 |
+
"# print( experts_indexies )\n",
|
23 |
+
"\n",
|
24 |
+
"if len(experts_extract_bit) != 8:\n",
|
25 |
+
" raise ValueError(\"experts_extract_bit length must be 8\")\n",
|
26 |
+
""
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"source": [
|
32 |
+
"!pip install git+https://github.com/huggingface/transformers --upgrade\n",
|
33 |
+
"!pip install torch accelerate bitsandbytes flash_attn sentencepiece protobuf"
|
34 |
+
],
|
35 |
+
"metadata": {
|
36 |
+
"id": "gJhESaUCul4-"
|
37 |
+
},
|
38 |
+
"execution_count": null,
|
39 |
+
"outputs": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"from google.colab import drive\n",
|
45 |
+
"drive.mount('/content/drive')"
|
46 |
+
],
|
47 |
+
"metadata": {
|
48 |
+
"colab": {
|
49 |
+
"base_uri": "https://localhost:8080/"
|
50 |
+
},
|
51 |
+
"id": "0kn65H6HvwXB",
|
52 |
+
"outputId": "0fdbc596-8288-4a1e-b0a4-ee4904b0a32a"
|
53 |
+
},
|
54 |
+
"execution_count": 2,
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"output_type": "stream",
|
58 |
+
"name": "stdout",
|
59 |
+
"text": [
|
60 |
+
"Mounted at /content/drive\n"
|
61 |
+
]
|
62 |
+
}
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": null,
|
68 |
+
"metadata": {
|
69 |
+
"colab": {
|
70 |
+
"background_save": true
|
71 |
+
},
|
72 |
+
"id": "WwnZPGHATsqv"
|
73 |
+
},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"%cd {temp_dir}\n",
|
77 |
+
"save_model_dir = model_name.split('/')[-1]\n",
|
78 |
+
"!mkdir -p {save_model_dir}\n",
|
79 |
+
"\n",
|
80 |
+
"!wget https://huggingface.co/{model_name_or_path}/resolve/main/config.json -O {save_model_dir}/config.json\n",
|
81 |
+
"!wget https://huggingface.co/{model_name_or_path}/resolve/main/model.safetensors.index.json -O {save_model_dir}/model.safetensors.index.json\n",
|
82 |
+
"!wget https://huggingface.co/{model_name_or_path}/resolve/main/generation_config.json -O {save_model_dir}/generation_config.json\n",
|
83 |
+
"\n",
|
84 |
+
"for i in range(1,20):\n",
|
85 |
+
" file_count_str = str(i).zfill(5)\n",
|
86 |
+
" !wget https://huggingface.co/{model_name_or_path}/resolve/main/model-{file_count_str}-of-00019.safetensors?download=true -O {save_model_dir}/model-{file_count_str}-of-00019.safetensors"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"source": [
|
92 |
+
"def download_tokenizer_model(save_tokenizer_dir):\n",
|
93 |
+
" !wget https://huggingface.co/{model_name_or_path}/resolve/main/tokenizer.model -O {save_tokenizer_dir}/tokenizer.model\n"
|
94 |
+
],
|
95 |
+
"metadata": {
|
96 |
+
"id": "SDnbZoAMSEB8"
|
97 |
+
},
|
98 |
+
"execution_count": 5,
|
99 |
+
"outputs": []
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": null,
|
104 |
+
"metadata": {
|
105 |
+
"id": "GpHX5HoDPCEM"
|
106 |
+
},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"%cd {temp_dir}\n",
|
110 |
+
"\n",
|
111 |
+
"import json\n",
|
112 |
+
"import re\n",
|
113 |
+
"import torch\n",
|
114 |
+
"from safetensors import safe_open\n",
|
115 |
+
"from safetensors.torch import save_file\n",
|
116 |
+
"\n",
|
117 |
+
"# model-00001-of-00019.safetensors\n",
|
118 |
+
"# model.safetensors.index.json\n",
|
119 |
+
"\n",
|
120 |
+
"# save tokenizer\n",
|
121 |
+
"from transformers import AutoTokenizer\n",
|
122 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)\n",
|
123 |
+
"tokenizer.save_pretrained(save_dir)\n",
|
124 |
+
"\n",
|
125 |
+
"# save config\n",
|
126 |
+
"config_path = f\"{target_dir}/config.json\"\n",
|
127 |
+
"config = None\n",
|
128 |
+
"with open(config_path, \"r\") as f:\n",
|
129 |
+
" config = json.load(f)\n",
|
130 |
+
" config[\"num_experts_per_tok\"] = num_experts_per_tok if len(experts_indexies) >= num_experts_per_tok else 1\n",
|
131 |
+
" config[\"num_local_experts\"] = len(experts_indexies)\n",
|
132 |
+
"\n",
|
133 |
+
"# save config\n",
|
134 |
+
"with open(f\"{save_dir}/config.json\", \"w\") as f:\n",
|
135 |
+
" json.dump(config, f, indent=2)\n",
|
136 |
+
"\n",
|
137 |
+
"\n",
|
138 |
+
"# weight\n",
|
139 |
+
"weight_map = {}\n",
|
140 |
+
"first_weights = [\"lm_head.weight\", \"model.embed_tokens.weight\", \"model.norm.weight\"]\n",
|
141 |
+
"\n",
|
142 |
+
"# load weight map\n",
|
143 |
+
"bin_index_path = f\"{target_dir}/model.safetensors.index.json\"\n",
|
144 |
+
"with open(bin_index_path, \"r\") as f:\n",
|
145 |
+
" weight_map = json.load(f)[\"weight_map\"]\n",
|
146 |
+
"\n",
|
147 |
+
"def tensor_load(file_name, map_location=None):\n",
|
148 |
+
" tensors = {}\n",
|
149 |
+
" with safe_open(file_name, framework=\"pt\") as f:\n",
|
150 |
+
" for k in f.keys():\n",
|
151 |
+
" tensors[k] = f.get_tensor(k)\n",
|
152 |
+
" return tensors\n",
|
153 |
+
"\n",
|
154 |
+
"def get_weight_byte_size(weight):\n",
|
155 |
+
"\n",
|
156 |
+
" if isinstance(weight, torch.Tensor):\n",
|
157 |
+
" weight_byte_size = weight.nelement() * weight.element_size()\n",
|
158 |
+
" else:\n",
|
159 |
+
" weight_byte_size = sum(p.nelement() * p.element_size() for p in weight.parameters())\n",
|
160 |
+
"\n",
|
161 |
+
" return weight_byte_size\n",
|
162 |
+
"\n",
|
163 |
+
"# load weight map\n",
|
164 |
+
"layers = {}\n",
|
165 |
+
"for key in weight_map.keys():\n",
|
166 |
+
" if key in first_weights:\n",
|
167 |
+
" continue\n",
|
168 |
+
"\n",
|
169 |
+
" # keyが\"model.layers.[0-9]+.\"にmatchする場合はlayers_listに追加する\n",
|
170 |
+
" layer_str = re.match(r\"model\\.layers\\.[0-9]+\\.\", key)[0]\n",
|
171 |
+
" if layer_str:\n",
|
172 |
+
" layer_no = re.findall(r\"\\d+\",layer_str)\n",
|
173 |
+
" layer_no = layer_no[0]\n",
|
174 |
+
" if layer_no not in layers.keys():\n",
|
175 |
+
" layers[layer_no] = []\n",
|
176 |
+
"\n",
|
177 |
+
" layers[layer_no].append({ \"key\":key, \"file_name\":weight_map[key] })\n",
|
178 |
+
"\n",
|
179 |
+
"# new weight_map index\n",
|
180 |
+
"new_weight_map = {\n",
|
181 |
+
" \"metadata\": {\n",
|
182 |
+
" \"total_size\": 0\n",
|
183 |
+
" },\n",
|
184 |
+
" \"weight_map\": {\n",
|
185 |
+
" }\n",
|
186 |
+
"}\n",
|
187 |
+
"\n",
|
188 |
+
"# load tensors\n",
|
189 |
+
"total_size = 0\n",
|
190 |
+
"tensor_weights = {}\n",
|
191 |
+
"tensors = {}\n",
|
192 |
+
"current_file_name = \"\"\n",
|
193 |
+
"\n",
|
194 |
+
"file_count = 0\n",
|
195 |
+
"file_count_str = str(file_count).zfill(5)\n",
|
196 |
+
"\n",
|
197 |
+
"for key in first_weights:\n",
|
198 |
+
" file_name = weight_map[key]\n",
|
199 |
+
" if current_file_name != file_name:\n",
|
200 |
+
"\n",
|
201 |
+
" # load safetensor\n",
|
202 |
+
" tensors = tensor_load(f\"{target_dir}/{file_name}\", map_location=\"cpu\")\n",
|
203 |
+
" current_file_name = file_name\n",
|
204 |
+
"\n",
|
205 |
+
" tensor_weights[key] = tensors[key]\n",
|
206 |
+
" new_weight_map[\"weight_map\"][key] = f\"model-{file_count_str}.safetensors\"\n",
|
207 |
+
"\n",
|
208 |
+
" # add weight size\n",
|
209 |
+
" total_size += get_weight_byte_size(tensor_weights[key])\n",
|
210 |
+
"\n",
|
211 |
+
"# save tensor\n",
|
212 |
+
"save_file(tensor_weights, f\"{save_dir}/model-{file_count_str}.safetensors\", metadata={\"format\":\"pt\"})\n",
|
213 |
+
"file_count += 1\n",
|
214 |
+
"\n",
|
215 |
+
"layer_keys = sorted([ int(k) for k in layers.keys()])\n",
|
216 |
+
"\n",
|
217 |
+
"for layer_no in layer_keys:\n",
|
218 |
+
" print(\"starting layer:\",layer_no)\n",
|
219 |
+
" file_count_str = str(file_count).zfill(5)\n",
|
220 |
+
" tensor_weights = {}\n",
|
221 |
+
"\n",
|
222 |
+
" stock_expert_weights = {}\n",
|
223 |
+
"\n",
|
224 |
+
" current_file_name = \"\"\n",
|
225 |
+
" for info in layers[str(layer_no)]:\n",
|
226 |
+
" file_name = info[\"file_name\"]\n",
|
227 |
+
" if current_file_name != file_name:\n",
|
228 |
+
" print(\"Loading Tensors \", file_name)\n",
|
229 |
+
" tensors = tensor_load(f\"{target_dir}/{file_name}\", map_location=\"cpu\")\n",
|
230 |
+
" current_file_name = file_name\n",
|
231 |
+
"\n",
|
232 |
+
" layer_key = info[\"key\"]\n",
|
233 |
+
" layer_weights = tensors[layer_key]\n",
|
234 |
+
"\n",
|
235 |
+
" if 'experts' in layer_key:\n",
|
236 |
+
"\n",
|
237 |
+
" lk = re.findall(r\"block_sparse_moe[.]experts[.][0-9]+.w\", layer_key)[0]\n",
|
238 |
+
" exp_index = int( re.findall(r\"\\d+\",lk)[0] )\n",
|
239 |
+
"\n",
|
240 |
+
" # select target experts\n",
|
241 |
+
" if exp_index in experts_indexies:\n",
|
242 |
+
" new_layer_key = re.sub(r\"block_sparse_moe\\.experts\\.\\d+\\.w\", f\"block_sparse_moe.experts.{experts_indexies.index(exp_index)}.w\", layer_key)\n",
|
243 |
+
"\n",
|
244 |
+
" tensor_weights[new_layer_key] = layer_weights\n",
|
245 |
+
"\n",
|
246 |
+
" # add weight size\n",
|
247 |
+
" total_size += get_weight_byte_size(tensor_weights[new_layer_key])\n",
|
248 |
+
"\n",
|
249 |
+
" new_weight_map[\"weight_map\"][new_layer_key] = f\"model-{file_count_str}.safetensors\"\n",
|
250 |
+
" print(\"new experts\", new_layer_key, tensor_weights[new_layer_key].shape, \"from\", layer_key)\n",
|
251 |
+
"\n",
|
252 |
+
" elif 'gate' in layer_key:\n",
|
253 |
+
" print(\"slice gate \", experts_indexies, layer_weights.shape, f\"-> ({len(experts_indexies)}, 4096)\", layer_key)\n",
|
254 |
+
"\n",
|
255 |
+
" # slice gate\n",
|
256 |
+
" tensor_weights[layer_key] = layer_weights[experts_indexies]\n",
|
257 |
+
"\n",
|
258 |
+
" # add weight size\n",
|
259 |
+
" total_size += get_weight_byte_size(tensor_weights[layer_key])\n",
|
260 |
+
"\n",
|
261 |
+
" new_weight_map[\"weight_map\"][layer_key] = f\"model-{file_count_str}.safetensors\"\n",
|
262 |
+
" print(layer_key, tensor_weights[layer_key].shape)\n",
|
263 |
+
"\n",
|
264 |
+
" else:\n",
|
265 |
+
" tensor_weights[layer_key] = layer_weights\n",
|
266 |
+
"\n",
|
267 |
+
" # add weight size\n",
|
268 |
+
" total_size += get_weight_byte_size(tensor_weights[layer_key])\n",
|
269 |
+
"\n",
|
270 |
+
" new_weight_map[\"weight_map\"][layer_key] = f\"model-{file_count_str}.safetensors\"\n",
|
271 |
+
" print(layer_key, tensor_weights[layer_key].shape)\n",
|
272 |
+
"\n",
|
273 |
+
" # save tensor\n",
|
274 |
+
" save_file(tensor_weights, f\"{save_dir}/model-{file_count_str}.safetensors\", metadata={\"format\":\"pt\"})\n",
|
275 |
+
" print(\"Save Tensors \", f\"{save_dir}/model-{file_count_str}.safetensors\")\n",
|
276 |
+
" file_count += 1\n",
|
277 |
+
"\n",
|
278 |
+
"# save new_weight_map\n",
|
279 |
+
"new_weight_map[\"metadata\"][\"total_size\"] = total_size\n",
|
280 |
+
"with open(f\"{save_dir}/model.safetensors.index.json\", \"w\") as f:\n",
|
281 |
+
" json.dump(new_weight_map, f, indent=2)\n",
|
282 |
+
"\n",
|
283 |
+
"# download tokenizer.model\n",
|
284 |
+
"download_tokenizer_model(save_dir)\n",
|
285 |
+
"\n",
|
286 |
+
"print(\"Done.\")\n"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"source": [
|
292 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM\n",
|
293 |
+
"import torch\n",
|
294 |
+
"\n",
|
295 |
+
"model_name_or_path = save_dir\n",
|
296 |
+
"\n",
|
297 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
298 |
+
"model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True)\n",
|
299 |
+
"\n",
|
300 |
+
"text = \"[INST] What was John Holt's vision on education? [/INST] \"\n",
|
301 |
+
"# text = \"[INST] What is the best anime? [/INST] \"\n",
|
302 |
+
"inputs = tokenizer(\"<s> \" + text, return_tensors=\"pt\")\n",
|
303 |
+
"\n",
|
304 |
+
"outputs = model.generate(**inputs, max_new_tokens=128)\n",
|
305 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n"
|
306 |
+
],
|
307 |
+
"metadata": {
|
308 |
+
"colab": {
|
309 |
+
"base_uri": "https://localhost:8080/",
|
310 |
+
"height": 138,
|
311 |
+
"referenced_widgets": [
|
312 |
+
"e9cfddc47787435993179dcbfb1fb89c",
|
313 |
+
"19f57b50941e4f929d12aadc944ce01b",
|
314 |
+
"b27b7fcb570c4f95bf4adeefba1aa146",
|
315 |
+
"05de7d1f41054d28b69479146f8cd557",
|
316 |
+
"41b69b2ea8204f69b87d7ecc8c83977b",
|
317 |
+
"3436fe87cab3486a829cd80f0805a099",
|
318 |
+
"d7325fddbaea46639294e0831aa4df18",
|
319 |
+
"420b8967a123405bb6349b2bee24a4d3",
|
320 |
+
"c480548c4a3f42628cde8b011ababff0",
|
321 |
+
"a28af63811954d6ebfbbb1d4ef437627",
|
322 |
+
"f07257d9b18a4f69b2efea9550d12014"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"id": "3dFbRvPe8yyK",
|
326 |
+
"outputId": "5b7f3a08-68f7-4e16-ecc4-cf36d9756f66"
|
327 |
+
},
|
328 |
+
"execution_count": 4,
|
329 |
+
"outputs": [
|
330 |
+
{
|
331 |
+
"output_type": "display_data",
|
332 |
+
"data": {
|
333 |
+
"text/plain": [
|
334 |
+
"Loading checkpoint shards: 0%| | 0/33 [00:00<?, ?it/s]"
|
335 |
+
],
|
336 |
+
"application/vnd.jupyter.widget-view+json": {
|
337 |
+
"version_major": 2,
|
338 |
+
"version_minor": 0,
|
339 |
+
"model_id": "e9cfddc47787435993179dcbfb1fb89c"
|
340 |
+
}
|
341 |
+
},
|
342 |
+
"metadata": {}
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"output_type": "stream",
|
346 |
+
"name": "stderr",
|
347 |
+
"text": [
|
348 |
+
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
|
349 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1665: UserWarning: You are calling .generate() with the `input_ids` being on a device type different than your model's device. `input_ids` is on cpu, whereas the model is on cuda. You may experience unexpected behaviors or slower generation. Please make sure that you have put `input_ids` to the correct device by calling for example input_ids = input_ids.to('cuda') before running `.generate()`.\n",
|
350 |
+
" warnings.warn(\n"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"output_type": "stream",
|
355 |
+
"name": "stdout",
|
356 |
+
"text": [
|
357 |
+
" [INST] What was John Holt's vision on education? [/INST] 10 John Holt's vision on education was to create a system that would allow students to learn at their own pace. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become\n"
|
358 |
+
]
|
359 |
+
}
|
360 |
+
]
|
361 |
+
}
|
362 |
+
],
|
363 |
+
"metadata": {
|
364 |
+
"colab": {
|
365 |
+
"machine_shape": "hm",
|
366 |
+
"provenance": [],
|
367 |
+
"gpuType": "A100"
|
368 |
+
},
|
369 |
+
"kernelspec": {
|
370 |
+
"display_name": "Python 3",
|
371 |
+
"name": "python3"
|
372 |
+
},
|
373 |
+
"language_info": {
|
374 |
+
"name": "python"
|
375 |
+
},
|
376 |
+
"accelerator": "GPU",
|
377 |
+
"widgets": {
|
378 |
+
"application/vnd.jupyter.widget-state+json": {
|
379 |
+
"e9cfddc47787435993179dcbfb1fb89c": {
|
380 |
+
"model_module": "@jupyter-widgets/controls",
|
381 |
+
"model_name": "HBoxModel",
|
382 |
+
"model_module_version": "1.5.0",
|
383 |
+
"state": {
|
384 |
+
"_dom_classes": [],
|
385 |
+
"_model_module": "@jupyter-widgets/controls",
|
386 |
+
"_model_module_version": "1.5.0",
|
387 |
+
"_model_name": "HBoxModel",
|
388 |
+
"_view_count": null,
|
389 |
+
"_view_module": "@jupyter-widgets/controls",
|
390 |
+
"_view_module_version": "1.5.0",
|
391 |
+
"_view_name": "HBoxView",
|
392 |
+
"box_style": "",
|
393 |
+
"children": [
|
394 |
+
"IPY_MODEL_19f57b50941e4f929d12aadc944ce01b",
|
395 |
+
"IPY_MODEL_b27b7fcb570c4f95bf4adeefba1aa146",
|
396 |
+
"IPY_MODEL_05de7d1f41054d28b69479146f8cd557"
|
397 |
+
],
|
398 |
+
"layout": "IPY_MODEL_41b69b2ea8204f69b87d7ecc8c83977b"
|
399 |
+
}
|
400 |
+
},
|
401 |
+
"19f57b50941e4f929d12aadc944ce01b": {
|
402 |
+
"model_module": "@jupyter-widgets/controls",
|
403 |
+
"model_name": "HTMLModel",
|
404 |
+
"model_module_version": "1.5.0",
|
405 |
+
"state": {
|
406 |
+
"_dom_classes": [],
|
407 |
+
"_model_module": "@jupyter-widgets/controls",
|
408 |
+
"_model_module_version": "1.5.0",
|
409 |
+
"_model_name": "HTMLModel",
|
410 |
+
"_view_count": null,
|
411 |
+
"_view_module": "@jupyter-widgets/controls",
|
412 |
+
"_view_module_version": "1.5.0",
|
413 |
+
"_view_name": "HTMLView",
|
414 |
+
"description": "",
|
415 |
+
"description_tooltip": null,
|
416 |
+
"layout": "IPY_MODEL_3436fe87cab3486a829cd80f0805a099",
|
417 |
+
"placeholder": "",
|
418 |
+
"style": "IPY_MODEL_d7325fddbaea46639294e0831aa4df18",
|
419 |
+
"value": "Loading checkpoint shards: 100%"
|
420 |
+
}
|
421 |
+
},
|
422 |
+
"b27b7fcb570c4f95bf4adeefba1aa146": {
|
423 |
+
"model_module": "@jupyter-widgets/controls",
|
424 |
+
"model_name": "FloatProgressModel",
|
425 |
+
"model_module_version": "1.5.0",
|
426 |
+
"state": {
|
427 |
+
"_dom_classes": [],
|
428 |
+
"_model_module": "@jupyter-widgets/controls",
|
429 |
+
"_model_module_version": "1.5.0",
|
430 |
+
"_model_name": "FloatProgressModel",
|
431 |
+
"_view_count": null,
|
432 |
+
"_view_module": "@jupyter-widgets/controls",
|
433 |
+
"_view_module_version": "1.5.0",
|
434 |
+
"_view_name": "ProgressView",
|
435 |
+
"bar_style": "success",
|
436 |
+
"description": "",
|
437 |
+
"description_tooltip": null,
|
438 |
+
"layout": "IPY_MODEL_420b8967a123405bb6349b2bee24a4d3",
|
439 |
+
"max": 33,
|
440 |
+
"min": 0,
|
441 |
+
"orientation": "horizontal",
|
442 |
+
"style": "IPY_MODEL_c480548c4a3f42628cde8b011ababff0",
|
443 |
+
"value": 33
|
444 |
+
}
|
445 |
+
},
|
446 |
+
"05de7d1f41054d28b69479146f8cd557": {
|
447 |
+
"model_module": "@jupyter-widgets/controls",
|
448 |
+
"model_name": "HTMLModel",
|
449 |
+
"model_module_version": "1.5.0",
|
450 |
+
"state": {
|
451 |
+
"_dom_classes": [],
|
452 |
+
"_model_module": "@jupyter-widgets/controls",
|
453 |
+
"_model_module_version": "1.5.0",
|
454 |
+
"_model_name": "HTMLModel",
|
455 |
+
"_view_count": null,
|
456 |
+
"_view_module": "@jupyter-widgets/controls",
|
457 |
+
"_view_module_version": "1.5.0",
|
458 |
+
"_view_name": "HTMLView",
|
459 |
+
"description": "",
|
460 |
+
"description_tooltip": null,
|
461 |
+
"layout": "IPY_MODEL_a28af63811954d6ebfbbb1d4ef437627",
|
462 |
+
"placeholder": "",
|
463 |
+
"style": "IPY_MODEL_f07257d9b18a4f69b2efea9550d12014",
|
464 |
+
"value": " 33/33 [11:07<00:00, 18.66s/it]"
|
465 |
+
}
|
466 |
+
},
|
467 |
+
"41b69b2ea8204f69b87d7ecc8c83977b": {
|
468 |
+
"model_module": "@jupyter-widgets/base",
|
469 |
+
"model_name": "LayoutModel",
|
470 |
+
"model_module_version": "1.2.0",
|
471 |
+
"state": {
|
472 |
+
"_model_module": "@jupyter-widgets/base",
|
473 |
+
"_model_module_version": "1.2.0",
|
474 |
+
"_model_name": "LayoutModel",
|
475 |
+
"_view_count": null,
|
476 |
+
"_view_module": "@jupyter-widgets/base",
|
477 |
+
"_view_module_version": "1.2.0",
|
478 |
+
"_view_name": "LayoutView",
|
479 |
+
"align_content": null,
|
480 |
+
"align_items": null,
|
481 |
+
"align_self": null,
|
482 |
+
"border": null,
|
483 |
+
"bottom": null,
|
484 |
+
"display": null,
|
485 |
+
"flex": null,
|
486 |
+
"flex_flow": null,
|
487 |
+
"grid_area": null,
|
488 |
+
"grid_auto_columns": null,
|
489 |
+
"grid_auto_flow": null,
|
490 |
+
"grid_auto_rows": null,
|
491 |
+
"grid_column": null,
|
492 |
+
"grid_gap": null,
|
493 |
+
"grid_row": null,
|
494 |
+
"grid_template_areas": null,
|
495 |
+
"grid_template_columns": null,
|
496 |
+
"grid_template_rows": null,
|
497 |
+
"height": null,
|
498 |
+
"justify_content": null,
|
499 |
+
"justify_items": null,
|
500 |
+
"left": null,
|
501 |
+
"margin": null,
|
502 |
+
"max_height": null,
|
503 |
+
"max_width": null,
|
504 |
+
"min_height": null,
|
505 |
+
"min_width": null,
|
506 |
+
"object_fit": null,
|
507 |
+
"object_position": null,
|
508 |
+
"order": null,
|
509 |
+
"overflow": null,
|
510 |
+
"overflow_x": null,
|
511 |
+
"overflow_y": null,
|
512 |
+
"padding": null,
|
513 |
+
"right": null,
|
514 |
+
"top": null,
|
515 |
+
"visibility": null,
|
516 |
+
"width": null
|
517 |
+
}
|
518 |
+
},
|
519 |
+
"3436fe87cab3486a829cd80f0805a099": {
|
520 |
+
"model_module": "@jupyter-widgets/base",
|
521 |
+
"model_name": "LayoutModel",
|
522 |
+
"model_module_version": "1.2.0",
|
523 |
+
"state": {
|
524 |
+
"_model_module": "@jupyter-widgets/base",
|
525 |
+
"_model_module_version": "1.2.0",
|
526 |
+
"_model_name": "LayoutModel",
|
527 |
+
"_view_count": null,
|
528 |
+
"_view_module": "@jupyter-widgets/base",
|
529 |
+
"_view_module_version": "1.2.0",
|
530 |
+
"_view_name": "LayoutView",
|
531 |
+
"align_content": null,
|
532 |
+
"align_items": null,
|
533 |
+
"align_self": null,
|
534 |
+
"border": null,
|
535 |
+
"bottom": null,
|
536 |
+
"display": null,
|
537 |
+
"flex": null,
|
538 |
+
"flex_flow": null,
|
539 |
+
"grid_area": null,
|
540 |
+
"grid_auto_columns": null,
|
541 |
+
"grid_auto_flow": null,
|
542 |
+
"grid_auto_rows": null,
|
543 |
+
"grid_column": null,
|
544 |
+
"grid_gap": null,
|
545 |
+
"grid_row": null,
|
546 |
+
"grid_template_areas": null,
|
547 |
+
"grid_template_columns": null,
|
548 |
+
"grid_template_rows": null,
|
549 |
+
"height": null,
|
550 |
+
"justify_content": null,
|
551 |
+
"justify_items": null,
|
552 |
+
"left": null,
|
553 |
+
"margin": null,
|
554 |
+
"max_height": null,
|
555 |
+
"max_width": null,
|
556 |
+
"min_height": null,
|
557 |
+
"min_width": null,
|
558 |
+
"object_fit": null,
|
559 |
+
"object_position": null,
|
560 |
+
"order": null,
|
561 |
+
"overflow": null,
|
562 |
+
"overflow_x": null,
|
563 |
+
"overflow_y": null,
|
564 |
+
"padding": null,
|
565 |
+
"right": null,
|
566 |
+
"top": null,
|
567 |
+
"visibility": null,
|
568 |
+
"width": null
|
569 |
+
}
|
570 |
+
},
|
571 |
+
"d7325fddbaea46639294e0831aa4df18": {
|
572 |
+
"model_module": "@jupyter-widgets/controls",
|
573 |
+
"model_name": "DescriptionStyleModel",
|
574 |
+
"model_module_version": "1.5.0",
|
575 |
+
"state": {
|
576 |
+
"_model_module": "@jupyter-widgets/controls",
|
577 |
+
"_model_module_version": "1.5.0",
|
578 |
+
"_model_name": "DescriptionStyleModel",
|
579 |
+
"_view_count": null,
|
580 |
+
"_view_module": "@jupyter-widgets/base",
|
581 |
+
"_view_module_version": "1.2.0",
|
582 |
+
"_view_name": "StyleView",
|
583 |
+
"description_width": ""
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"420b8967a123405bb6349b2bee24a4d3": {
|
587 |
+
"model_module": "@jupyter-widgets/base",
|
588 |
+
"model_name": "LayoutModel",
|
589 |
+
"model_module_version": "1.2.0",
|
590 |
+
"state": {
|
591 |
+
"_model_module": "@jupyter-widgets/base",
|
592 |
+
"_model_module_version": "1.2.0",
|
593 |
+
"_model_name": "LayoutModel",
|
594 |
+
"_view_count": null,
|
595 |
+
"_view_module": "@jupyter-widgets/base",
|
596 |
+
"_view_module_version": "1.2.0",
|
597 |
+
"_view_name": "LayoutView",
|
598 |
+
"align_content": null,
|
599 |
+
"align_items": null,
|
600 |
+
"align_self": null,
|
601 |
+
"border": null,
|
602 |
+
"bottom": null,
|
603 |
+
"display": null,
|
604 |
+
"flex": null,
|
605 |
+
"flex_flow": null,
|
606 |
+
"grid_area": null,
|
607 |
+
"grid_auto_columns": null,
|
608 |
+
"grid_auto_flow": null,
|
609 |
+
"grid_auto_rows": null,
|
610 |
+
"grid_column": null,
|
611 |
+
"grid_gap": null,
|
612 |
+
"grid_row": null,
|
613 |
+
"grid_template_areas": null,
|
614 |
+
"grid_template_columns": null,
|
615 |
+
"grid_template_rows": null,
|
616 |
+
"height": null,
|
617 |
+
"justify_content": null,
|
618 |
+
"justify_items": null,
|
619 |
+
"left": null,
|
620 |
+
"margin": null,
|
621 |
+
"max_height": null,
|
622 |
+
"max_width": null,
|
623 |
+
"min_height": null,
|
624 |
+
"min_width": null,
|
625 |
+
"object_fit": null,
|
626 |
+
"object_position": null,
|
627 |
+
"order": null,
|
628 |
+
"overflow": null,
|
629 |
+
"overflow_x": null,
|
630 |
+
"overflow_y": null,
|
631 |
+
"padding": null,
|
632 |
+
"right": null,
|
633 |
+
"top": null,
|
634 |
+
"visibility": null,
|
635 |
+
"width": null
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"c480548c4a3f42628cde8b011ababff0": {
|
639 |
+
"model_module": "@jupyter-widgets/controls",
|
640 |
+
"model_name": "ProgressStyleModel",
|
641 |
+
"model_module_version": "1.5.0",
|
642 |
+
"state": {
|
643 |
+
"_model_module": "@jupyter-widgets/controls",
|
644 |
+
"_model_module_version": "1.5.0",
|
645 |
+
"_model_name": "ProgressStyleModel",
|
646 |
+
"_view_count": null,
|
647 |
+
"_view_module": "@jupyter-widgets/base",
|
648 |
+
"_view_module_version": "1.2.0",
|
649 |
+
"_view_name": "StyleView",
|
650 |
+
"bar_color": null,
|
651 |
+
"description_width": ""
|
652 |
+
}
|
653 |
+
},
|
654 |
+
"a28af63811954d6ebfbbb1d4ef437627": {
|
655 |
+
"model_module": "@jupyter-widgets/base",
|
656 |
+
"model_name": "LayoutModel",
|
657 |
+
"model_module_version": "1.2.0",
|
658 |
+
"state": {
|
659 |
+
"_model_module": "@jupyter-widgets/base",
|
660 |
+
"_model_module_version": "1.2.0",
|
661 |
+
"_model_name": "LayoutModel",
|
662 |
+
"_view_count": null,
|
663 |
+
"_view_module": "@jupyter-widgets/base",
|
664 |
+
"_view_module_version": "1.2.0",
|
665 |
+
"_view_name": "LayoutView",
|
666 |
+
"align_content": null,
|
667 |
+
"align_items": null,
|
668 |
+
"align_self": null,
|
669 |
+
"border": null,
|
670 |
+
"bottom": null,
|
671 |
+
"display": null,
|
672 |
+
"flex": null,
|
673 |
+
"flex_flow": null,
|
674 |
+
"grid_area": null,
|
675 |
+
"grid_auto_columns": null,
|
676 |
+
"grid_auto_flow": null,
|
677 |
+
"grid_auto_rows": null,
|
678 |
+
"grid_column": null,
|
679 |
+
"grid_gap": null,
|
680 |
+
"grid_row": null,
|
681 |
+
"grid_template_areas": null,
|
682 |
+
"grid_template_columns": null,
|
683 |
+
"grid_template_rows": null,
|
684 |
+
"height": null,
|
685 |
+
"justify_content": null,
|
686 |
+
"justify_items": null,
|
687 |
+
"left": null,
|
688 |
+
"margin": null,
|
689 |
+
"max_height": null,
|
690 |
+
"max_width": null,
|
691 |
+
"min_height": null,
|
692 |
+
"min_width": null,
|
693 |
+
"object_fit": null,
|
694 |
+
"object_position": null,
|
695 |
+
"order": null,
|
696 |
+
"overflow": null,
|
697 |
+
"overflow_x": null,
|
698 |
+
"overflow_y": null,
|
699 |
+
"padding": null,
|
700 |
+
"right": null,
|
701 |
+
"top": null,
|
702 |
+
"visibility": null,
|
703 |
+
"width": null
|
704 |
+
}
|
705 |
+
},
|
706 |
+
"f07257d9b18a4f69b2efea9550d12014": {
|
707 |
+
"model_module": "@jupyter-widgets/controls",
|
708 |
+
"model_name": "DescriptionStyleModel",
|
709 |
+
"model_module_version": "1.5.0",
|
710 |
+
"state": {
|
711 |
+
"_model_module": "@jupyter-widgets/controls",
|
712 |
+
"_model_module_version": "1.5.0",
|
713 |
+
"_model_name": "DescriptionStyleModel",
|
714 |
+
"_view_count": null,
|
715 |
+
"_view_module": "@jupyter-widgets/base",
|
716 |
+
"_view_module_version": "1.2.0",
|
717 |
+
"_view_name": "StyleView",
|
718 |
+
"description_width": ""
|
719 |
+
}
|
720 |
+
}
|
721 |
+
}
|
722 |
+
}
|
723 |
+
},
|
724 |
+
"nbformat": 4,
|
725 |
+
"nbformat_minor": 0
|
726 |
+
}
|