Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
base_model:
|
4 |
+
- google/gemma-3-12b-it
|
5 |
+
---
|
6 |
+
This is an HQQ-quantized version (4-bit, group-size=64) of the <a href="https://huggingface.co/google/gemma-3-12b-it">gemma-3-12b-it</a> model.
|
7 |
+
|
8 |
+
## Usage
|
9 |
+
```Python
|
10 |
+
import torch
|
11 |
+
backend = "torchao_int4"
|
12 |
+
compute_dtype = torch.bfloat16 if backend=="torchao_int4" else torch.float16
|
13 |
+
cache_dir = None
|
14 |
+
model_id = 'mobiuslabsgmbh/gemma-3-12b-it_4bitgs64_bfp16_hqq_hf'
|
15 |
+
|
16 |
+
#Load model
|
17 |
+
from transformers import Gemma3ForConditionalGeneration, AutoProcessor
|
18 |
+
|
19 |
+
processor = AutoProcessor.from_pretrained(model_id, cache_dir=cache_dir)
|
20 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
21 |
+
model_id,
|
22 |
+
torch_dtype=compute_dtype,
|
23 |
+
attn_implementation="sdpa",
|
24 |
+
cache_dir=cache_dir,
|
25 |
+
device_map="cuda",
|
26 |
+
)
|
27 |
+
|
28 |
+
#Optimize
|
29 |
+
from hqq.utils.patching import prepare_for_inference
|
30 |
+
prepare_for_inference(model.language_model, backend=backend, verbose=True)
|
31 |
+
|
32 |
+
|
33 |
+
############################################################################
|
34 |
+
#Inference
|
35 |
+
messages = [
|
36 |
+
{
|
37 |
+
"role": "system",
|
38 |
+
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"role": "user",
|
42 |
+
"content": [
|
43 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
44 |
+
{"type": "text", "text": "Describe this image in detail."}
|
45 |
+
]
|
46 |
+
}
|
47 |
+
]
|
48 |
+
|
49 |
+
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=compute_dtype)
|
50 |
+
|
51 |
+
input_len = inputs["input_ids"].shape[-1]
|
52 |
+
|
53 |
+
with torch.inference_mode():
|
54 |
+
generation = model.generate(**inputs, max_new_tokens=128, do_sample=False)[0][input_len:]
|
55 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
56 |
+
|
57 |
+
print(decoded)
|
58 |
+
|
59 |
+
|
60 |
+
```
|
61 |
+
|