Commit
·
a63ac85
1
Parent(s):
9cd475e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: git-base-coco-dummy-temp100
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# git-base-coco-dummy-temp100
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/git-base-coco](https://huggingface.co/microsoft/git-base-coco) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3244
|
18 |
+
- Wer Score: 2.5274
|
19 |
+
- Blue Score: 0.1539
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 32
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 50
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Score | Blue Score |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:----------:|
|
52 |
+
| 8.003 | 1.01 | 35 | 6.0344 | 1.2184 | 0.0042 |
|
53 |
+
| 4.5865 | 2.03 | 70 | 2.7898 | 2.0108 | 0.0150 |
|
54 |
+
| 1.6831 | 3.04 | 105 | 0.7239 | 1.8867 | 0.0250 |
|
55 |
+
| 0.5535 | 4.06 | 140 | 0.4567 | 1.9632 | 0.0377 |
|
56 |
+
| 0.3898 | 5.07 | 175 | 0.4016 | 2.2010 | 0.0618 |
|
57 |
+
| 0.3024 | 6.09 | 210 | 0.3712 | 1.7956 | 0.0892 |
|
58 |
+
| 0.2411 | 7.1 | 245 | 0.3506 | 2.5006 | 0.0950 |
|
59 |
+
| 0.2034 | 8.12 | 280 | 0.3388 | 2.1609 | 0.1094 |
|
60 |
+
| 0.1721 | 9.13 | 315 | 0.3319 | 2.2919 | 0.1092 |
|
61 |
+
| 0.1449 | 10.14 | 350 | 0.3236 | 2.1683 | 0.1184 |
|
62 |
+
| 0.1245 | 11.16 | 385 | 0.3205 | 2.3594 | 0.1242 |
|
63 |
+
| 0.1073 | 12.17 | 420 | 0.3160 | 2.4311 | 0.1343 |
|
64 |
+
| 0.0956 | 13.19 | 455 | 0.3141 | 2.3027 | 0.1327 |
|
65 |
+
| 0.0821 | 14.2 | 490 | 0.3121 | 2.3957 | 0.1369 |
|
66 |
+
| 0.07 | 15.22 | 525 | 0.3131 | 2.2508 | 0.1407 |
|
67 |
+
| 0.0678 | 16.23 | 560 | 0.3114 | 2.4291 | 0.1390 |
|
68 |
+
| 0.0563 | 17.25 | 595 | 0.3113 | 2.5218 | 0.1428 |
|
69 |
+
| 0.0518 | 18.26 | 630 | 0.3108 | 2.2964 | 0.1513 |
|
70 |
+
| 0.0474 | 19.28 | 665 | 0.3138 | 2.2457 | 0.1492 |
|
71 |
+
| 0.0407 | 20.29 | 700 | 0.3136 | 2.3072 | 0.1485 |
|
72 |
+
| 0.0383 | 21.3 | 735 | 0.3138 | 2.4791 | 0.1426 |
|
73 |
+
| 0.0373 | 22.32 | 770 | 0.3136 | 2.4541 | 0.1472 |
|
74 |
+
| 0.03 | 23.33 | 805 | 0.3145 | 2.4218 | 0.1500 |
|
75 |
+
| 0.0316 | 24.35 | 840 | 0.3141 | 2.4169 | 0.1466 |
|
76 |
+
| 0.0255 | 25.36 | 875 | 0.3149 | 2.5450 | 0.1473 |
|
77 |
+
| 0.0266 | 26.38 | 910 | 0.3159 | 2.4613 | 0.1475 |
|
78 |
+
| 0.0245 | 27.39 | 945 | 0.3161 | 2.4809 | 0.1506 |
|
79 |
+
| 0.0223 | 28.41 | 980 | 0.3172 | 2.4252 | 0.1516 |
|
80 |
+
| 0.0189 | 29.42 | 1015 | 0.3173 | 2.6111 | 0.1501 |
|
81 |
+
| 0.0204 | 30.43 | 1050 | 0.3184 | 2.5457 | 0.1518 |
|
82 |
+
| 0.0194 | 31.45 | 1085 | 0.3191 | 2.6389 | 0.1493 |
|
83 |
+
| 0.0154 | 32.46 | 1120 | 0.3188 | 2.5125 | 0.1518 |
|
84 |
+
| 0.017 | 33.48 | 1155 | 0.3192 | 2.5197 | 0.1485 |
|
85 |
+
| 0.0161 | 34.49 | 1190 | 0.3210 | 2.5103 | 0.1512 |
|
86 |
+
| 0.0146 | 35.51 | 1225 | 0.3206 | 2.4992 | 0.1527 |
|
87 |
+
| 0.0135 | 36.52 | 1260 | 0.3221 | 2.4620 | 0.1516 |
|
88 |
+
| 0.0139 | 37.54 | 1295 | 0.3216 | 2.4769 | 0.1519 |
|
89 |
+
| 0.0132 | 38.55 | 1330 | 0.3215 | 2.5613 | 0.1525 |
|
90 |
+
| 0.0121 | 39.57 | 1365 | 0.3222 | 2.5648 | 0.1518 |
|
91 |
+
| 0.0121 | 40.58 | 1400 | 0.3226 | 2.5601 | 0.1541 |
|
92 |
+
| 0.0114 | 41.59 | 1435 | 0.3231 | 2.4888 | 0.1527 |
|
93 |
+
| 0.0123 | 42.61 | 1470 | 0.3239 | 2.5037 | 0.1537 |
|
94 |
+
| 0.0101 | 43.62 | 1505 | 0.3241 | 2.5378 | 0.1526 |
|
95 |
+
| 0.0109 | 44.64 | 1540 | 0.3245 | 2.5312 | 0.1534 |
|
96 |
+
| 0.0109 | 45.65 | 1575 | 0.3245 | 2.5692 | 0.1529 |
|
97 |
+
| 0.0098 | 46.67 | 1610 | 0.3243 | 2.5583 | 0.1536 |
|
98 |
+
| 0.0109 | 47.68 | 1645 | 0.3248 | 2.5498 | 0.1536 |
|
99 |
+
| 0.0101 | 48.7 | 1680 | 0.3244 | 2.5274 | 0.1539 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.30.2
|
105 |
+
- Pytorch 2.0.1+cu118
|
106 |
+
- Datasets 2.14.3
|
107 |
+
- Tokenizers 0.13.3
|