PEFT
code
instruct
mistral
File size: 1,343 Bytes
1a2360b
 
faac4b1
 
 
9c4fc47
faac4b1
9c4fc47
 
faac4b1
 
 
 
 
9c4fc47
faac4b1
9c4fc47
faac4b1
 
 
05b17c9
faac4b1
 
 
9c4fc47
faac4b1
 
9c4fc47
 
faac4b1
 
 
 
9c4fc47
 
faac4b1
 
05b17c9
 
 
faac4b1
7c05d33
 
9c4fc47
faac4b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
library_name: peft
tags:
- code
- instruct
- mistral
datasets:
- cognitivecomputations/dolphin-coder
base_model: mistralai/Mistral-7B-v0.1
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** mistralai/Mistral-7B-v0.1 

**Dataset:** cognitivecomputations/dolphin-coder 

#### Dataset Insights:

[Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 15hr 36mins for 1 epochs using an A6000 48GB GPU.
- Costed `$31.51` for the entire 1 epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Cost Per Epoch:** $31.51
- **Model Path:** mistralai/Mistral-7B-v0.1
- **Learning Rate:** 0.0002
- **Data Split:** 100% train 
- **Gradient Accumulation Steps:** 128
- **lora r:** 32
- **lora alpha:** 64

![Train Loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/kUDqiPdErxwf8sU-lHwI1.png)

---
license: apache-2.0