File size: 2,179 Bytes
ba04018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language: en
license: agpl-3.0
tags:
- computer-vision
- object-detection
- license-plate
- yolov11
- ultralytics
- finetuned
datasets:
- roboflow/license-plate-recognition-rxg4e
metrics:
- precision
- recall
- mAP@50
- mAP@50-95
---
# YOLOv11-License-Plate Detection
This is a fine-tuned version of YOLOv11 (n, s, m, l, x) specialized for **License Plate Detection**, using a public dataset from Roboflow Universe:
[License Plate Recognition Dataset (10,125 images)](https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/11)
## π Use Cases
- Smart Parking Systems
- Tollgate / Access Control Automation
- Traffic Surveillance & Enforcement
- ALPR with OCR Integration
## ποΈ Training Details
- Base Model: YOLOv11 (`n`, `s`, `m`, `l`, `x`)
- Training Epochs: 300
- Input Size: 640x640
- Optimizer: SGD (Ultralytics default)
- Device: NVIDIA A100
- Data Format: YOLOv5-compatible (images + labels in txt)
## π Evaluation Metrics (YOLOv11x)
| Metric | Value |
|---------------|---------|
| Precision | 0.9893 |
| Recall | 0.9508 |
| mAP@50 | 0.9813 |
| mAP@50-95 | 0.7260 |
> For full table across models (n to x), please see the [README](README.md)
## π¦ Model Variants
- PyTorch (.pt) β for use with Ultralytics CLI and Python API
- ONNX (.onnx) β for cross-platform inference
## π§ How to Use
With Python (Ultralytics API):
```python
from ultralytics import YOLO
model = YOLO('yolov11x-license-plate.pt')
results = model.predict(source='image.jpg')
```
## π License
- Base Model (YOLOv11): AGPLv3 by [Ultralytics](https://github.com/ultralytics/ultralytics)
- Dataset: CC BY 4.0 by Roboflow Universe
- This model: AGPLv3 (due to YOLOv11 license inheritance)
## β
License Compliance Reminder
In accordance with the AGPLv3 license:
- If you **use this model** in a service or project, you must **open source** the code that uses it.
- Please give proper attribution to Roboflow, Ultralytics, and MorseTechLab when using or deploying.
For license details, refer to [GNU AGPLv3 License](https://www.gnu.org/licenses/agpl-3.0.en.html)
|