|
--- |
|
language: en |
|
license: agpl-3.0 |
|
tags: |
|
- computer-vision |
|
- object-detection |
|
- license-plate |
|
- yolov11 |
|
- ultralytics |
|
- finetuned |
|
datasets: |
|
- roboflow/license-plate-recognition-rxg4e |
|
metrics: |
|
- precision |
|
- recall |
|
- mAP@50 |
|
- mAP@50-95 |
|
--- |
|
|
|
# YOLOv11-License-Plate Detection |
|
|
|
This is a fine-tuned version of YOLOv11 (n, s, m, l, x) specialized for **License Plate Detection**, using a public dataset from Roboflow Universe: |
|
[License Plate Recognition Dataset (10,125 images)](https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/11) |
|
|
|
## π Use Cases |
|
|
|
- Smart Parking Systems |
|
- Tollgate / Access Control Automation |
|
- Traffic Surveillance & Enforcement |
|
- ALPR with OCR Integration |
|
|
|
## ποΈ Training Details |
|
|
|
- Base Model: YOLOv11 (`n`, `s`, `m`, `l`, `x`) |
|
- Training Epochs: 300 |
|
- Input Size: 640x640 |
|
- Optimizer: SGD (Ultralytics default) |
|
- Device: NVIDIA A100 |
|
- Data Format: YOLOv5-compatible (images + labels in txt) |
|
|
|
## π Evaluation Metrics (YOLOv11x) |
|
|
|
| Metric | Value | |
|
|---------------|---------| |
|
| Precision | 0.9893 | |
|
| Recall | 0.9508 | |
|
| mAP@50 | 0.9813 | |
|
| mAP@50-95 | 0.7260 | |
|
|
|
> For full table across models (n to x), please see the [README](README.md) |
|
|
|
## π¦ Model Variants |
|
|
|
- PyTorch (.pt) β for use with Ultralytics CLI and Python API |
|
- ONNX (.onnx) β for cross-platform inference |
|
|
|
## π§ How to Use |
|
|
|
With Python (Ultralytics API): |
|
```python |
|
from ultralytics import YOLO |
|
model = YOLO('yolov11x-license-plate.pt') |
|
results = model.predict(source='image.jpg') |
|
``` |
|
|
|
## π License |
|
|
|
- Base Model (YOLOv11): AGPLv3 by [Ultralytics](https://github.com/ultralytics/ultralytics) |
|
- Dataset: CC BY 4.0 by Roboflow Universe |
|
- This model: AGPLv3 (due to YOLOv11 license inheritance) |
|
|
|
## β
License Compliance Reminder |
|
|
|
In accordance with the AGPLv3 license: |
|
- If you **use this model** in a service or project, you must **open source** the code that uses it. |
|
- Please give proper attribution to Roboflow, Ultralytics, and MorseTechLab when using or deploying. |
|
|
|
For license details, refer to [GNU AGPLv3 License](https://www.gnu.org/licenses/agpl-3.0.en.html) |
|
|