--- language: en license: agpl-3.0 tags: - computer-vision - object-detection - license-plate - yolov11 - ultralytics - finetuned datasets: - roboflow/license-plate-recognition-rxg4e metrics: - precision - recall - mAP@50 - mAP@50-95 --- # YOLOv11-License-Plate Detection This is a fine-tuned version of YOLOv11 (n, s, m, l, x) specialized for **License Plate Detection**, using a public dataset from Roboflow Universe: [License Plate Recognition Dataset (10,125 images)](https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/11) ## 🚀 Use Cases - Smart Parking Systems - Tollgate / Access Control Automation - Traffic Surveillance & Enforcement - ALPR with OCR Integration ## 🏋️ Training Details - Base Model: YOLOv11 (`n`, `s`, `m`, `l`, `x`) - Training Epochs: 300 - Input Size: 640x640 - Optimizer: SGD (Ultralytics default) - Device: NVIDIA A100 - Data Format: YOLOv5-compatible (images + labels in txt) ## 📊 Evaluation Metrics (YOLOv11x) | Metric | Value | |---------------|---------| | Precision | 0.9893 | | Recall | 0.9508 | | mAP@50 | 0.9813 | | mAP@50-95 | 0.7260 | > For full table across models (n to x), please see the [README](README.md) ## 📦 Model Variants - PyTorch (.pt) — for use with Ultralytics CLI and Python API - ONNX (.onnx) — for cross-platform inference ## 🧠 How to Use With Python (Ultralytics API): ```python from ultralytics import YOLO model = YOLO('yolov11x-license-plate.pt') results = model.predict(source='image.jpg') ``` ## 📜 License - Base Model (YOLOv11): AGPLv3 by [Ultralytics](https://github.com/ultralytics/ultralytics) - Dataset: CC BY 4.0 by Roboflow Universe - This model: AGPLv3 (due to YOLOv11 license inheritance) ## ✅ License Compliance Reminder In accordance with the AGPLv3 license: - If you **use this model** in a service or project, you must **open source** the code that uses it. - Please give proper attribution to Roboflow, Ultralytics, and MorseTechLab when using or deploying. For license details, refer to [GNU AGPLv3 License](https://www.gnu.org/licenses/agpl-3.0.en.html)