| """Converts Huggingface Causal LM to Prefix LM. | |
| Conversion does lightweight surgery on a HuggingFace | |
| Causal LM to convert it to a Prefix LM. | |
| Prefix LMs accepts a `bidirectional_mask` input in `forward` | |
| and treat the input prompt as the prefix in `generate`. | |
| """ | |
| from types import MethodType | |
| from typing import Any, List, MutableMapping, Optional, Tuple, Union | |
| import torch | |
| from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel | |
| from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM | |
| from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM | |
| from transformers.models.gptj.modeling_gptj import GPTJForCausalLM | |
| _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM) | |
| CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] | |
| def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES: | |
| """Converts a GPT-style Causal LM to a Prefix LM. | |
| Supported HuggingFace model classes: | |
| - `GPT2LMHeadModel` | |
| - `GPTNeoForCausalLM` | |
| - `GPTNeoXForCausalLM` | |
| - `GPTJForCausalLM` | |
| See `convert_hf_causal_lm_to_prefix_lm` for more details. | |
| """ | |
| if hasattr(model, '_prefix_lm_converted'): | |
| return model | |
| assert isinstance(model, _SUPPORTED_GPT_MODELS) | |
| assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models' | |
| def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]: | |
| """Helper that gets a list of the model's attention modules. | |
| Each module has a `bias` buffer used for causal masking. The Prefix LM | |
| conversion adds logic to dynamically manipulate these biases to support | |
| Prefix LM attention masking. | |
| """ | |
| attn_modules = [] | |
| if isinstance(model, GPTNeoXForCausalLM): | |
| blocks = model.gpt_neox.layers | |
| else: | |
| blocks = model.transformer.h | |
| for block in blocks: | |
| if isinstance(model, GPTNeoForCausalLM): | |
| if block.attn.attention_type != 'global': | |
| continue | |
| attn_module = block.attn.attention | |
| elif isinstance(model, GPTNeoXForCausalLM): | |
| attn_module = block.attention | |
| else: | |
| attn_module = block.attn | |
| attn_modules.append(attn_module) | |
| return attn_modules | |
| setattr(model, '_original_forward', getattr(model, 'forward')) | |
| setattr(model, '_original_generate', getattr(model, 'generate')) | |
| def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): | |
| """Wraps original forward to enable PrefixLM attention.""" | |
| def call_og_forward(): | |
| if isinstance(self, GPTNeoXForCausalLM): | |
| return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
| else: | |
| return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
| if bidirectional_mask is None: | |
| return call_og_forward() | |
| assert isinstance(bidirectional_mask, torch.Tensor) | |
| attn_modules = _get_attn_modules(model) | |
| (b, s) = bidirectional_mask.shape | |
| max_length = attn_modules[0].bias.shape[-1] | |
| if s > max_length: | |
| raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).') | |
| assert s <= max_length | |
| if s < max_length: | |
| pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device) | |
| bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1) | |
| bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1) | |
| for attn_module in attn_modules: | |
| assert isinstance(attn_module.bias, torch.Tensor) | |
| attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional) | |
| output = call_og_forward() | |
| for attn_module in attn_modules: | |
| attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] | |
| return output | |
| def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any): | |
| """Wraps original generate to enable PrefixLM attention.""" | |
| attn_modules = _get_attn_modules(model) | |
| for attn_module in attn_modules: | |
| attn_module.bias.data[:] = 1 | |
| output = self._original_generate(*args, **kwargs) | |
| for attn_module in attn_modules: | |
| attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] | |
| return output | |
| setattr(model, 'forward', MethodType(forward, model)) | |
| setattr(model, 'generate', MethodType(generate, model)) | |
| setattr(model, '_prefix_lm_converted', True) | |
| return model | |
| _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS | |
| CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] | |
| def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES: | |
| """Converts a HuggingFace Causal LM to a Prefix LM. | |
| Supported HuggingFace model classes: | |
| - `GPT2LMHeadModel` | |
| - `GPTNeoForCausalLM` | |
| - `GPTNeoXForCausalLM` | |
| - `GPTJForCausalLM` | |
| Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the | |
| `generate` method and/or select underlying methods depending on the model class. | |
| These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask". | |
| Notes on training: | |
| To actually train the converted model as a Prefix LM, training batches will need to indicate | |
| the prefix/target structure by including `bidirectional_mask` as part of the batch inputs. | |
| **This is not a standard input and requires custom layers either within or after your dataloader.** | |
| In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels` | |
| such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`. | |
| That is, the prefix portion of the sequence should not generate any loss. Loss should only be | |
| generated by the target portion of the sequence. | |
| Notes on `GPTNeoForCausalLM`: | |
| To simplify the implementation, "global" and "local" attention layers are handled differently. | |
| For "global" layers, we handle conversion as described above. For "local" layers, which use a | |
| causal attention mask within a restricted local window, we do not alter the masking. | |
| Notes on `forward` method conversion: | |
| After conversion, the `forward` method will handle a new input, `bidirectional_mask`, | |
| which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions | |
| belonging to the prefix (prefix tokens can attend to one another bidirectionally), and | |
| 0 indicates token positions belonging to the target. | |
| The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing | |
| causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset | |
| the causal masks before returning the result. | |
| Notes on `generate` method conversion: | |
| After conversion, the `generate` method will have the same signature but will internally | |
| convert all causal masks to be purely bidirectional, call the original `generate` method, and | |
| (where appropriate) reset the causal masks before returning the result. | |
| This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token | |
| "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates | |
| each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one | |
| another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and | |
| previously-generated tokens (also as expected in a Prefix LM). | |
| To preserve the API, the original methods are renamed to `_original_forward` and | |
| `_original_generate`, and replaced with new `forward` and `generate` methods that wrap | |
| them, respectively. Although implementation details vary by model class. | |
| """ | |
| if isinstance(model, _SUPPORTED_GPT_MODELS): | |
| return _convert_gpt_causal_lm_to_prefix_lm(model) | |
| else: | |
| raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}') | |
| def add_bidirectional_mask_if_missing(batch: MutableMapping): | |
| """Attempts to add bidirectional_mask to batch if missing. | |
| Raises: | |
| KeyError if bidirectional_mask is missing and can't be inferred | |
| """ | |
| if 'bidirectional_mask' not in batch: | |
| if batch.get('mode', None) == 'icl_task': | |
| batch['bidirectional_mask'] = batch['attention_mask'].clone() | |
| for (i, continuation_indices) in enumerate(batch['continuation_indices']): | |
| batch['bidirectional_mask'][i, continuation_indices] = 0 | |
| elif 'labels' in batch and 'attention_mask' in batch: | |
| batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask']) | |
| else: | |
| raise KeyError('No bidirectional_mask in batch and not sure how to construct one.') |