--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B tags: - generated_from_trainer model-index: - name: genrm-deepseek-ai-DeepSeek-R1-Distill-Qwen-14B results: [] --- # genrm-deepseek-ai-DeepSeek-R1-Distill-Qwen-14B This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.2028 | 0.0163 | 200 | 0.3168 | | 0.1841 | 0.0326 | 400 | 0.3174 | | 0.178 | 0.0489 | 600 | 0.3028 | | 0.193 | 0.0652 | 800 | 0.3068 | | 0.1912 | 0.0815 | 1000 | 0.3044 | | 0.189 | 0.0979 | 1200 | 0.3004 | | 0.1857 | 0.1142 | 1400 | 0.3047 | | 0.175 | 0.1305 | 1600 | 0.3043 | | 0.1717 | 0.1468 | 1800 | 0.2981 | | 0.1779 | 0.1631 | 2000 | 0.3049 | | 0.1727 | 0.1794 | 2200 | 0.3041 | | 0.1796 | 0.1957 | 2400 | 0.3054 | | 0.1843 | 0.2120 | 2600 | 0.2994 | | 0.1832 | 0.2283 | 2800 | 0.3020 | | 0.1642 | 0.2446 | 3000 | 0.3049 | | 0.1954 | 0.2609 | 3200 | 0.2988 | | 0.1884 | 0.2773 | 3400 | 0.2992 | | 0.1717 | 0.2936 | 3600 | 0.2983 | | 0.1744 | 0.3099 | 3800 | 0.2982 | | 0.1717 | 0.3262 | 4000 | 0.3021 | | 0.1519 | 0.3425 | 4200 | 0.2989 | | 0.1857 | 0.3588 | 4400 | 0.2981 | | 0.1802 | 0.3751 | 4600 | 0.3004 | | 0.1637 | 0.3914 | 4800 | 0.2981 | | 0.1611 | 0.4077 | 5000 | 0.2993 | | 0.1957 | 0.4240 | 5200 | 0.2973 | | 0.169 | 0.4403 | 5400 | 0.2950 | | 0.1542 | 0.4567 | 5600 | 0.2972 | | 0.1669 | 0.4730 | 5800 | 0.2943 | | 0.1667 | 0.4893 | 6000 | 0.2944 | | 0.1742 | 0.5056 | 6200 | 0.2963 | | 0.1676 | 0.5219 | 6400 | 0.2951 | | 0.1537 | 0.5382 | 6600 | 0.2975 | | 0.1876 | 0.5545 | 6800 | 0.2979 | | 0.1543 | 0.5708 | 7000 | 0.2980 | | 0.1709 | 0.5871 | 7200 | 0.2981 | | 0.1608 | 0.6034 | 7400 | 0.2967 | | 0.1727 | 0.6198 | 7600 | 0.2973 | | 0.1659 | 0.6361 | 7800 | 0.2959 | | 0.1862 | 0.6524 | 8000 | 0.2990 | | 0.1758 | 0.6687 | 8200 | 0.2974 | | 0.1981 | 0.6850 | 8400 | 0.2965 | | 0.1616 | 0.7013 | 8600 | 0.2943 | | 0.1738 | 0.7176 | 8800 | 0.2943 | | 0.1775 | 0.7339 | 9000 | 0.2958 | | 0.1683 | 0.7502 | 9200 | 0.2949 | | 0.1632 | 0.7665 | 9400 | 0.2946 | | 0.1702 | 0.7828 | 9600 | 0.2937 | | 0.1937 | 0.7992 | 9800 | 0.2944 | | 0.162 | 0.8155 | 10000 | 0.2964 | | 0.167 | 0.8318 | 10200 | 0.2968 | | 0.1708 | 0.8481 | 10400 | 0.2963 | | 0.16 | 0.8644 | 10600 | 0.2970 | | 0.1695 | 0.8807 | 10800 | 0.2944 | | 0.1568 | 0.8970 | 11000 | 0.2948 | | 0.1708 | 0.9133 | 11200 | 0.2952 | | 0.1561 | 0.9296 | 11400 | 0.2961 | | 0.158 | 0.9459 | 11600 | 0.2950 | | 0.1763 | 0.9622 | 11800 | 0.2948 | | 0.1579 | 0.9786 | 12000 | 0.2950 | | 0.1512 | 0.9949 | 12200 | 0.2953 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3