File size: 2,005 Bytes
4885087
72741f1
49b7480
6472c7f
 
 
 
49b7480
 
 
6472c7f
 
 
4885087
 
6472c7f
 
4885087
49b7480
6472c7f
4885087
6472c7f
 
49b7480
 
 
 
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
4885087
6472c7f
 
 
 
 
 
 
 
 
 
 
4885087
6472c7f
4885087
6472c7f
 
49b7480
4885087
 
6472c7f
4885087
6472c7f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: other
base_model: nvidia/segformer-b1-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try_7_31
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/tgjpuivw)
# segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try_7_31

This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0133
- Mean Iou: 0.8164
- Precision: 0.8785
- Recall: 0.9203

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Mean Iou | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|
| 0.0151        | 0.9989 | 229  | 0.0133          | 0.8164   | 0.8785    | 0.9203 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1