--- library_name: transformers license: apache-2.0 base_model: mouseyy/result_data-1 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: result_data_2-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: uk split: test args: uk metrics: - name: Wer type: wer value: 0.3390885932635154 --- # result_data_2-3 This model is a fine-tuned version of [mouseyy/result_data-1](https://huggingface.co/mouseyy/result_data-1) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2363 - Wer: 0.3391 - Cer: 0.1637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1584533148786865e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 135 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.1644 | 0.9099 | 1000 | 0.2423 | 0.3691 | 0.1712 | | 0.1373 | 1.8198 | 2000 | 0.2359 | 0.3586 | 0.1699 | | 0.1219 | 2.7298 | 3000 | 0.2351 | 0.3487 | 0.1665 | | 0.1106 | 3.6397 | 4000 | 0.2399 | 0.3447 | 0.1667 | | 0.0986 | 4.5496 | 5000 | 0.2418 | 0.3388 | 0.1639 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0