--- base_model: openai/whisper-large-v3-turbo datasets: - bn language: bn library_name: transformers license: apache-2.0 model-index: - name: Finetuned openai/whisper-large-v3-turbo on Bengali results: - task: type: automatic-speech-recognition name: Speech-to-Text dataset: name: Common Voice (Bengali) type: common_voice metrics: - type: wer value: 11.053 --- # Finetuned openai/whisper-large-v3-turbo on 21409 Bengali training audio samples from cv-corpus-21.0-2025-03-14/bn. This model was created from the Mozilla.ai Blueprint: [speech-to-text-finetune](https://github.com/mozilla-ai/speech-to-text-finetune). ## Evaluation results on 9363 audio samples of Bengali: ### Baseline model (before finetuning) on Bengali - Word Error Rate (Normalized): 78.843 - Word Error Rate (Orthographic): 107.027 - Character Error Rate (Normalized): 62.521 - Character Error Rate (Orthographic): 72.012 - Loss: 1.074 ### Finetuned model (after finetuning) on Bengali - Word Error Rate (Normalized): 11.053 - Word Error Rate (Orthographic): 26.436 - Character Error Rate (Normalized): 6.059 - Character Error Rate (Orthographic): 7.537 - Loss: 0.109