File size: 5,412 Bytes
4ade0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6db5da
 
4ade0bc
 
 
 
323faf6
 
 
 
 
 
4ade0bc
 
b6db5da
 
 
4ade0bc
 
 
 
 
 
 
 
 
 
 
 
 
b6db5da
 
4ade0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80855ed
4ade0bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: PJMixers-Dev/Gemma-3-Earthen-v0.2-4B
datasets:
- BeaverAI/REDACTED1
- BeaverAI/REDACTED2
- BeaverAI/REDACTED3
- BeaverAI/REDACTED4
- PJMixers-Dev/Lit-axo-Shuffled
- PJMixers-Dev/Mielikki_Erebus-87k-axo
- PJMixers/RyokoAI_Honeyfeed3600-Cleanish
- PJMixers-Dev/allura-org_fujin-cleaned-stage-2-axo
- Nelathan/synthetic-sugar-quill
- PJMixers-Dev/winglian_visual-novels-json-axo
- PJMixers-Dev/recursal_SCP-RECURSAL-Cleaned
- PJMixers-Dev/Subtitles
- PJMixers-Dev/KaraKaraWitch_AnimeSubtitle-axo
- PJMixers-Dev/Fundus-105K-Formatted
- PJMixers-Dev/Fundus-AP-News-Formatted
- PJMixers/AP-News-2024
- PJMixers-Dev/goodwiki-2024-12-04-axo
- epfl-llm/guidelines
- PJMixers-Dev/Gryphe-Aesir-RPG-Charcards-Opus-Mixed
- allura-org/gryphe-sonnet-3.5-charcards-names-added
- anthracite-org/c2_logs_32k_llama3_qwen2_v1.3
- PJMixers-Dev/MinervaAI_Aesir-Preview-Anon
- PJMixers-Dev/lemonilia_LimaRP-Simple-CustomShareGPT-Shuffled
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- PJMixers-Dev/NyxKrage_chub-logs-sharegpt-longest-CustomShareGPT
- PJMixers/OpenLeecher_Teatime_all_logs_longest-ShareGPT
- grimulkan/aicg-logs-augmented
- grimulkan/PIPPA-augmented-dedup
- PJMixers/grimulkan_bluemoon_Karen_cleaned-carded-formatted
- PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
- Gryphe/ChatGPT-4o-Writing-Prompts
- Gryphe/Opus-WritingPrompts
- anthracite-org/nopm_claude_writing_fixed
- PJMixers-Dev/Tiefighter-13B-Fake-Distill-ShareGPT
- allura-org/fujin-instruct-v2
- PocketDoc/Dans-Prosemaxx-Adventure
- PocketDoc/Dans-Failuremaxx-Adventure-3
language:
- en
library_name: transformers
license: gemma
mradermacher:
  readme_rev: 1
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/PJMixers-Dev/Gemma-3-Earthen-v0.2-4B

<!-- provided-files -->

***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Gemma-3-Earthen-v0.2-4B-GGUF).***

weighted/imatrix quants are available at https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.7 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.mmproj-f16.gguf) | mmproj-f16 | 1.0 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q2_K.gguf) | Q2_K | 1.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q5_K_M.gguf) | Q5_K_M | 2.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q6_K.gguf) | Q6_K | 3.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Gemma-3-Earthen-v0.2-4B-GGUF/resolve/main/Gemma-3-Earthen-v0.2-4B.f16.gguf) | f16 | 7.9 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->