Transformers
GGUF
programming
code generation
code
codeqwen
Mixture of Experts
coding
coder
qwen2
chat
qwen
qwen-coder
qwen3
finetune
brainstorm 20x
brainstorm
optional thinking
creative
all use cases
QiMing
QiMing-holos
bagua
decision-making
strategic-analysis
cognitive-architecture
philosophy-driven-ai
imatrix
conversational
auto-patch README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<!-- ### quantize_version: 2 -->
|
2 |
<!-- ### output_tensor_quantised: 1 -->
|
3 |
<!-- ### convert_type: hf -->
|
@@ -7,3 +56,67 @@
|
|
7 |
<!-- ### quants_skip: -->
|
8 |
<!-- ### skip_mmproj: -->
|
9 |
weighted/imatrix quants of https://huggingface.co/DavidAU/Qwen3-16B-QiMing-V1.0-Total-Recall-Light
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: DavidAU/Qwen3-16B-QiMing-V1.0-Total-Recall-Light
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
- zh
|
7 |
+
- de
|
8 |
+
library_name: transformers
|
9 |
+
license: apache-2.0
|
10 |
+
mradermacher:
|
11 |
+
readme_rev: 1
|
12 |
+
quantized_by: mradermacher
|
13 |
+
tags:
|
14 |
+
- programming
|
15 |
+
- code generation
|
16 |
+
- code
|
17 |
+
- codeqwen
|
18 |
+
- programming
|
19 |
+
- code generation
|
20 |
+
- code
|
21 |
+
- codeqwen
|
22 |
+
- moe
|
23 |
+
- coding
|
24 |
+
- coder
|
25 |
+
- qwen2
|
26 |
+
- chat
|
27 |
+
- qwen
|
28 |
+
- qwen-coder
|
29 |
+
- chat
|
30 |
+
- qwen
|
31 |
+
- qwen-coder
|
32 |
+
- qwen3
|
33 |
+
- finetune
|
34 |
+
- brainstorm 20x
|
35 |
+
- brainstorm
|
36 |
+
- optional thinking
|
37 |
+
- creative
|
38 |
+
- all use cases
|
39 |
+
- QiMing
|
40 |
+
- QiMing-holos
|
41 |
+
- bagua
|
42 |
+
- decision-making
|
43 |
+
- strategic-analysis
|
44 |
+
- cognitive-architecture
|
45 |
+
- chat
|
46 |
+
- philosophy-driven-ai
|
47 |
+
---
|
48 |
+
## About
|
49 |
+
|
50 |
<!-- ### quantize_version: 2 -->
|
51 |
<!-- ### output_tensor_quantised: 1 -->
|
52 |
<!-- ### convert_type: hf -->
|
|
|
56 |
<!-- ### quants_skip: -->
|
57 |
<!-- ### skip_mmproj: -->
|
58 |
weighted/imatrix quants of https://huggingface.co/DavidAU/Qwen3-16B-QiMing-V1.0-Total-Recall-Light
|
59 |
+
|
60 |
+
<!-- provided-files -->
|
61 |
+
|
62 |
+
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF).***
|
63 |
+
|
64 |
+
static quants are available at https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-GGUF
|
65 |
+
## Usage
|
66 |
+
|
67 |
+
If you are unsure how to use GGUF files, refer to one of [TheBloke's
|
68 |
+
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
|
69 |
+
more details, including on how to concatenate multi-part files.
|
70 |
+
|
71 |
+
## Provided Quants
|
72 |
+
|
73 |
+
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
|
74 |
+
|
75 |
+
| Link | Type | Size/GB | Notes |
|
76 |
+
|:-----|:-----|--------:|:------|
|
77 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
|
78 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ1_S.gguf) | i1-IQ1_S | 4.0 | for the desperate |
|
79 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ1_M.gguf) | i1-IQ1_M | 4.3 | mostly desperate |
|
80 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.7 | |
|
81 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ2_XS.gguf) | i1-IQ2_XS | 5.2 | |
|
82 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ2_S.gguf) | i1-IQ2_S | 5.5 | |
|
83 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ2_M.gguf) | i1-IQ2_M | 5.9 | |
|
84 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.9 | very low quality |
|
85 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q2_K.gguf) | i1-Q2_K | 6.3 | IQ3_XXS probably better |
|
86 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.5 | lower quality |
|
87 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ3_XS.gguf) | i1-IQ3_XS | 7.0 | |
|
88 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q3_K_S.gguf) | i1-Q3_K_S | 7.3 | IQ3_XS probably better |
|
89 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ3_S.gguf) | i1-IQ3_S | 7.4 | beats Q3_K* |
|
90 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ3_M.gguf) | i1-IQ3_M | 7.6 | |
|
91 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q3_K_M.gguf) | i1-Q3_K_M | 8.1 | IQ3_S probably better |
|
92 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.7 | IQ3_M probably better |
|
93 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.9 | |
|
94 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q4_0.gguf) | i1-Q4_0 | 9.4 | fast, low quality |
|
95 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-IQ4_NL.gguf) | i1-IQ4_NL | 9.4 | prefer IQ4_XS |
|
96 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q4_K_S.gguf) | i1-Q4_K_S | 9.4 | optimal size/speed/quality |
|
97 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.9 | fast, recommended |
|
98 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q4_1.gguf) | i1-Q4_1 | 10.3 | |
|
99 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q5_K_S.gguf) | i1-Q5_K_S | 11.3 | |
|
100 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q5_K_M.gguf) | i1-Q5_K_M | 11.5 | |
|
101 |
+
| [GGUF](https://huggingface.co/mradermacher/Qwen3-16B-QiMing-V1.0-Total-Recall-Light-i1-GGUF/resolve/main/Qwen3-16B-QiMing-V1.0-Total-Recall-Light.i1-Q6_K.gguf) | i1-Q6_K | 13.3 | practically like static Q6_K |
|
102 |
+
|
103 |
+
Here is a handy graph by ikawrakow comparing some lower-quality quant
|
104 |
+
types (lower is better):
|
105 |
+
|
106 |
+

|
107 |
+
|
108 |
+
And here are Artefact2's thoughts on the matter:
|
109 |
+
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
|
110 |
+
|
111 |
+
## FAQ / Model Request
|
112 |
+
|
113 |
+
See https://huggingface.co/mradermacher/model_requests for some answers to
|
114 |
+
questions you might have and/or if you want some other model quantized.
|
115 |
+
|
116 |
+
## Thanks
|
117 |
+
|
118 |
+
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
|
119 |
+
me use its servers and providing upgrades to my workstation to enable
|
120 |
+
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
|
121 |
+
|
122 |
+
<!-- end -->
|