File size: 3,906 Bytes
7e3a141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe9be6
 
7e3a141
2bf3008
 
7e3a141
 
 
50a72ab
 
 
 
 
 
7e3a141
 
9fe9be6
 
 
7e3a141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
datasets:
- HuggingFaceM4/the_cauldron
- HuggingFaceM4/Docmatix
- lmms-lab/LLaVA-OneVision-Data
- lmms-lab/M4-Instruct-Data
- HuggingFaceFV/finevideo
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
- lmms-lab/LLaVA-Video-178K
- orrzohar/Video-STaR
- Mutonix/Vript
- TIGER-Lab/VISTA-400K
- Enxin/MovieChat-1K_train
- ShareGPT4Video/ShareGPT4Video
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
  readme_rev: 1
quantized_by: mradermacher
tags:
- video-text-to-text
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct

<!-- provided-files -->

***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SmolVLM2-2.2B-Instruct-GGUF).***

weighted/imatrix quants are available at https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q2_K.gguf) | Q2_K | 0.8 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.9 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q3_K_L.gguf) | Q3_K_L | 1.1 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.IQ4_XS.gguf) | IQ4_XS | 1.1 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q5_K_S.gguf) | Q5_K_S | 1.4 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q5_K_M.gguf) | Q5_K_M | 1.4 |  |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q6_K.gguf) | Q6_K | 1.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/SmolVLM2-2.2B-Instruct-GGUF/resolve/main/SmolVLM2-2.2B-Instruct.f16.gguf) | f16 | 3.7 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->