OpenF5-TTS / config.yaml
mrfakename's picture
Initial commit
de91f68 verified
raw
history blame contribute delete
2.01 kB
hydra:
run:
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
datasets:
name: V2_Emilia_EN # dataset name
# batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
batch_size_per_gpu: 19200
batch_size_type: frame # frame | sample
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
num_workers: 16
optim:
epochs: 11
learning_rate: 7.5e-5
num_warmup_updates: 20000 # warmup updates
# grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
grad_accumulation_steps: 4
max_grad_norm: 1.0 # gradient clipping
bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
model:
name: OpenF5TTS_v2_Base # model name
tokenizer: char # tokenizer type
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
backbone: DiT
arch:
dim: 1024
depth: 22
heads: 16
ff_mult: 2
text_dim: 512
text_mask_padding: True
qk_norm: null # null | rms_norm
conv_layers: 4
pe_attn_head: null
checkpoint_activations: False # recompute activations and save memory for extra compute
mel_spec:
target_sample_rate: 24000
n_mel_channels: 100
hop_length: 256
win_length: 1024
n_fft: 1024
mel_spec_type: vocos # vocos | bigvgan
vocoder:
is_local: False # use local offline ckpt or not
local_path: null # local vocoder path
ckpts:
logger: wandb # wandb | tensorboard | null
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
save_per_updates: 50000 # save checkpoint per updates
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
last_per_updates: 5000 # save last checkpoint per updates
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}