msbayindir commited on
Commit
5380e58
·
verified ·
1 Parent(s): f556672

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -162
README.md CHANGED
@@ -1,6 +1,9 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -10,190 +13,109 @@ tags: []
10
 
11
 
12
  ## Model Details
 
 
 
 
13
 
14
- ### Model Description
 
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - tr
5
+ metrics:
6
+ - bleu
7
  ---
8
 
9
  # Model Card for Model ID
 
13
 
14
 
15
  ## Model Details
16
+ <p>
17
+ This model(10-epoch) has been trained with the dataset
18
+ <a href="https://github.com/okanvk/Turkish-Reading-Comprehension-Question-Answering-Dataset">Turkish-Reading-Comprehension-Question-Answering-Dataset </a>for Turkish question-answering
19
+ </p>
20
 
21
+ <h1>Usage</h1>
22
+ <h2>install package</h2>
23
+ <ul>
24
+ <li>!pip install transformers</li>
25
+ <li>!pip install evaluate</li>
26
+ <li>!pip install rouge</li>
27
+
28
+ </ul>
29
+ <h2>Codes</h2>
30
 
31
+ <h3>Imports</h3>
32
+
33
+ ```python
34
 
35
+ import torch
36
+ import nltk
37
+ import string
38
+ import evaluate # Bleu
39
+ import pandas as pd
40
+ import numpy as np
41
+ from transformers import T5Tokenizer, MT5Model, MT5ForConditionalGeneration, MT5TokenizerFast
42
 
43
+ import warnings
 
 
 
 
 
 
44
 
45
+ ```
46
 
47
+ ```python
48
 
49
+ TOKENIZER = MT5TokenizerFast.from_pretrained("msbayindir/mt5-small-sample")
50
+ MODEL = MT5ForConditionalGeneration.from_pretrained("msbayindir/mt5-small-sample", return_dict=True)
51
+ DEVICE = "cuda:0"
52
+ MODEL = MODEL.to(device=DEVICE)
53
+ Q_LEN = 256 # Question Length
54
+ T_LEN = 32
55
 
56
+ ```
57
 
58
+ ```python
59
 
60
+ def predict_answer(context, question, ref_answer=None):
61
+ inputs = TOKENIZER(question, context, max_length=Q_LEN, padding="max_length", truncation=True, add_special_tokens=True)
62
 
63
+ input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).to(DEVICE).unsqueeze(0)
64
+ attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).to(DEVICE).unsqueeze(0)
65
 
66
+ outputs = MODEL.generate(input_ids=input_ids, attention_mask=attention_mask)
67
 
68
+ predicted_answer = TOKENIZER.decode(outputs.flatten(), skip_special_tokens=True)
69
 
70
+ if ref_answer:
71
+ # Load the Bleu metric
72
+ bleu = evaluate.load("google_bleu")
73
+ score = bleu.compute(predictions=[predicted_answer],
74
+ references=[ref_answer])
75
 
76
+ print("Context: \n", context)
77
+ print("\n")
78
+ print("Question: \n", question)
79
+ return {
80
+ "Reference Answer: ": ref_answer,
81
+ "Predicted Answer: ": predicted_answer,
82
+ "BLEU Score: ": score
83
+ }
84
+ else:
85
+ return predicted_answer
86
 
87
+ ```
88
 
89
+ ###Samples
90
 
 
91
 
92
+ ```python
93
+ context = """Katmandu Büyükşehir Şehri (KMC),
94
+ uluslararası ilişkileri teşvik etmek amacıyla Uluslararası İlişkiler Sekreterliği (IRC) kurmuştur.
95
+ KMC'nin ilk uluslararası ilişkisi 1975 yılında Eugene, Oregon, Amerika Birleşik Devletleri ile kurulmuştur.
96
+ Bu etkinlik, diğer 8 şehirle resmi ilişkiler kurarak daha da geliştirilmiştir:
97
+ Motsumoto City of Japan, Rochester, Myanmar Yangon (eski adıyla Rangoon),
98
+ Çin Halk Cumhuriyeti'nden Xi'an, Belarus Minsk ve Kore Demokratik Cumhuriyeti'nden Pyongyang. KMC'nin sürekli çabası,
99
+ Katmandu için daha iyi kentsel yönetim ve gelişim programları elde etmek için SAARC ülkeleri, diğer Uluslararası ajanslar ve
100
+ dünyanın diğer birçok büyük şehirleri ile etkileşimini geliştirmektir."""
101
+ answer = "Katmandu ilk uluslararası ilişkisini hangi yılda yarattı?"
102
+ predict_answer(context,answer)
103
 
104
+ '1975'
105
 
106
+ ```
107
 
108
+ ```python
109
 
110
+ context = """Yapay zeka (YZ), modern dünyada hızla gelişen bir teknoloji alanıdır. YZ, sağlık, finans ve eğitim gibi birçok sektörde kullanılmaktadır.
111
+ Sağlık alanında, YZ algoritmaları hastalık teşhislerinde yardımcı olabilir. Finans sektöründe, YZ, piyasa analizleri yaparak yatırım kararlarını destekler.
112
+ Eğitimde ise, öğrenci performansını izler ve bireyselleştirilmiş öğrenme programları oluşturur.
113
+ Ancak, YZ'nin kullanımı etik ve gizlilik konularında endişeler doğurur.
114
+ Veri güvenliği ve algoritmik önyargılar, dikkatle ele alınması gereken önemli meselelerdir."""
115
+ answer = "Yapay zeka hangi sektörlerde kullanılmaktadır?"
116
+ predict_answer(context,answer)
117
 
 
118
 
119
+ 'sağlık, finans ve eğitim'
120
 
121
+ ```