File size: 4,827 Bytes
efb3216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Macros:
# ==============================================================================
new_freq = 24000

# Parameters for AudioDataModule:
# ==============================================================================
AudioDataModule.num_workers = 20

# Parameters for AudioDataset:
# ==============================================================================
AudioDataset.half_precision = True
AudioDataset.mono = True
AudioDataset.new_freq = %new_freq
AudioDataset.num_frames = 480000
AudioDataset.orig_freq = 16000

# Parameters for build_dev_datamodule:
# ==============================================================================
build_dev_datamodule.datamodule = @discotube

# Parameters for build_module:
# ==============================================================================
build_module.ckpt_path = 'model.ckpt'
build_module.module = @modules.maskingmodel.MaskingModel
build_module.net = @nets.conformer.Conformer
build_module.representation = \
    [@nets.cqt.CQT,
     @nets.encodec.EnCodec,
     @nets.melspectrogram.MelSpectrogram,
     @nets.waveform.Waveform]

# Parameters for Conformer:
# ==============================================================================
Conformer.alpha_deepnorm = 2.6321480259049848
Conformer.beta_deepnorm = 0.022386873579657126
Conformer.conv_kernel_size = 5
Conformer.depth = 24
Conformer.dropout = 0.2
Conformer.embed_dim = 1024
Conformer.input_dropout = 0.0
Conformer.mlp_ratio = 4.0
Conformer.mlp_residual_factor = 4.0
Conformer.num_heads = 8
Conformer.num_patches = None
Conformer.use_deepnorm = True
Conformer.use_rope = True

# Parameters for CosineAnnealingCallback:
# ==============================================================================
CosineAnnealingCallback.eta_min = 1e-07
CosineAnnealingCallback.warmup_steps = 30000

# Parameters for CQT:
# ==============================================================================
CQT.bins_per_octave = 24
CQT.f_min = 32.703
CQT.hop_len = 320
CQT.logC = True
CQT.magnitude = True
CQT.n_bins = 188
CQT.norm_mean = 4.754879065310596
CQT.norm_std = 1.9055732535255916
CQT.patch_size = (188, 3)
CQT.power = 2
CQT.sr = %new_freq

# Parameters for DiscotubeAudioDataModule:
# ==============================================================================
DiscotubeAudioDataModule.batch_size = 20
DiscotubeAudioDataModule.data_dir = ''
DiscotubeAudioDataModule.filelist_train = ''
DiscotubeAudioDataModule.filelist_val = ''

# Parameters for EnCodec:
# ==============================================================================
EnCodec.norm_type = 'global'
EnCodec.orig_sr = %new_freq
EnCodec.patch_size = (128, 3)
EnCodec.stats_path = None
EnCodec.weights_path = 'facebook/encodec_24khz'

# Parameters for FiniteScalarQuantizer:
# ==============================================================================
FiniteScalarQuantizer.levels = [6, 6, 6, 6, 6]
FiniteScalarQuantizer.preserve_symmetry = True

# Parameters for MaskingModel:
# ==============================================================================
MaskingModel.codebook_dim = 1
MaskingModel.codebook_size = 7776
MaskingModel.diff_input = False
MaskingModel.input_representation = @nets.waveform.Waveform
MaskingModel.lr = 0.0001
MaskingModel.mask_prob = 0.6
MaskingModel.mask_seconds = 0.4
MaskingModel.num_codebooks = 1
MaskingModel.plot_tokens = False
MaskingModel.quantizer_type = 'finite_scalar_quantizer'
MaskingModel.seed = 0
MaskingModel.weight_decay = 0.01

# Parameters for MelSpectrogram:
# ==============================================================================
MelSpectrogram.freq_mask_param = 0
MelSpectrogram.hop_len = 320
MelSpectrogram.mel_scale = 'slaney'
MelSpectrogram.n_mel = 96
MelSpectrogram.norm = 'slaney'
MelSpectrogram.norm_mean = 2.06755686098554
MelSpectrogram.norm_std = 1.268292820667291
MelSpectrogram.patch_size = (96, 3)
MelSpectrogram.power = 2
MelSpectrogram.sr = %new_freq
MelSpectrogram.stretch_factor = 1
MelSpectrogram.time_mask_param = 0
MelSpectrogram.win_len = 512

# Parameters for train:
# ==============================================================================
train.params = \
    {'accelerator': 'gpu',
     'devices': 4,
     'log_every_n_steps': 50,
     'max_steps': 400000,
     'num_nodes': 2,
     'num_sanity_val_steps': 0,
     'precision': 'bf16-mixed',
     'strategy': 'ddp_find_unused_parameters_true'}
train.wandb_params = \
    {'entity': 'mtg-upf',
     'group': 'masking_conformer',
     'name': 'mask_conf_large_au_to_all_25hz_fsq',
     'offline': True,
     'project': 'mtg-ssl',
     'save_dir': '/gpfs/projects/upf97/logs/'}

# Parameters for Waveform:
# ==============================================================================
Waveform.norm_mean = None
Waveform.norm_std = None
Waveform.patch_size = (1, 960)
Waveform.sr = %new_freq