genera-cloud-image-classification / test_model_streamlit.py
mubaraknumann's picture
Upload test_model_streamlit.py
704902c verified
raw
history blame
13.9 kB
import streamlit as st
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers # For custom layer definitions
import numpy as np
from PIL import Image
import json
import os
# --- RepVGGBlock Class Definition (Latest Verified Version) ---
# Users will need this definition if it's a custom layer in your model.
class RepVGGBlock(layers.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
groups=1, deploy=False, use_se=False, **kwargs):
super(RepVGGBlock, self).__init__(**kwargs)
self.config_initial_in_channels = in_channels
self.config_out_channels = out_channels
self.config_kernel_size = kernel_size
self.config_strides_val = stride
self.config_groups = groups
self._deploy_mode_internal = deploy
self.config_use_se = use_se
self.actual_in_channels = None
self.rbr_dense_conv = layers.Conv2D(
filters=self.config_out_channels, kernel_size=self.config_kernel_size,
strides=self.config_strides_val, padding='same',
groups=self.config_groups, use_bias=False, name=self.name + '_dense_conv'
)
self.rbr_dense_bn = layers.BatchNormalization(name=self.name + '_dense_bn')
self.rbr_1x1_conv = layers.Conv2D(
filters=self.config_out_channels, kernel_size=1,
strides=self.config_strides_val, padding='valid',
groups=self.config_groups, use_bias=False, name=self.name + '_1x1_conv'
)
self.rbr_1x1_bn = layers.BatchNormalization(name=self.name + '_1x1_bn')
self.rbr_identity_bn = None
self.rbr_reparam = layers.Conv2D(
filters=self.config_out_channels, kernel_size=self.config_kernel_size,
strides=self.config_strides_val, padding='same',
groups=self.config_groups, use_bias=True, name=self.name + '_reparam_conv'
)
def build(self, input_shape):
self.actual_in_channels = input_shape[-1]
if self.config_initial_in_channels is None:
self.config_initial_in_channels = self.actual_in_channels
elif self.config_initial_in_channels != self.actual_in_channels:
raise ValueError(f"Input channel mismatch for layer {self.name}: Expected {self.config_initial_in_channels}, got {self.actual_in_channels}")
if self.rbr_identity_bn is None and \
self.actual_in_channels == self.config_out_channels and self.config_strides_val == 1:
self.rbr_identity_bn = layers.BatchNormalization(name=self.name + '_identity_bn')
super(RepVGGBlock, self).build(input_shape)
if not self.rbr_dense_conv.built: self.rbr_dense_conv.build(input_shape)
if not self.rbr_dense_bn.built: self.rbr_dense_bn.build(self.rbr_dense_conv.compute_output_shape(input_shape))
if not self.rbr_1x1_conv.built: self.rbr_1x1_conv.build(input_shape)
if not self.rbr_1x1_bn.built: self.rbr_1x1_bn.build(self.rbr_1x1_conv.compute_output_shape(input_shape))
if self.rbr_identity_bn is not None and not self.rbr_identity_bn.built:
self.rbr_identity_bn.build(input_shape)
if not self.rbr_reparam.built:
self.rbr_reparam.build(input_shape)
def call(self, inputs):
if self._deploy_mode_internal:
return self.rbr_reparam(inputs)
else:
out_dense = self.rbr_dense_bn(self.rbr_dense_conv(inputs))
out_1x1 = self.rbr_1x1_bn(self.rbr_1x1_conv(inputs))
if self.rbr_identity_bn is not None:
out_identity = self.rbr_identity_bn(inputs)
return out_dense + out_1x1 + out_identity
else: return out_dense + out_1x1
def _fuse_bn_tensor(self, conv_layer, bn_layer): # Not called during inference with deploy=True model
kernel = conv_layer.kernel; dtype = kernel.dtype; out_channels = kernel.shape[-1]
gamma = getattr(bn_layer, 'gamma', tf.ones(out_channels, dtype=dtype))
beta = getattr(bn_layer, 'beta', tf.zeros(out_channels, dtype=dtype))
running_mean = getattr(bn_layer, 'moving_mean', tf.zeros(out_channels, dtype=dtype))
running_var = getattr(bn_layer, 'moving_variance', tf.ones(out_channels, dtype=dtype))
epsilon = bn_layer.epsilon; std = tf.sqrt(running_var + epsilon)
fused_kernel = kernel * (gamma / std)
if conv_layer.use_bias: fused_bias = beta + (gamma * (conv_layer.bias - running_mean)) / std
else: fused_bias = beta - (running_mean * gamma) / std
return fused_kernel, fused_bias
def reparameterize(self): # Not called during inference with deploy=True model
if self._deploy_mode_internal: return
branches_to_check = [self.rbr_dense_conv, self.rbr_dense_bn, self.rbr_1x1_conv, self.rbr_1x1_bn]
if self.rbr_identity_bn: branches_to_check.append(self.rbr_identity_bn)
for branch_layer in branches_to_check:
if not branch_layer.built: raise Exception(f"ERROR: Branch layer {branch_layer.name} for {self.name} not built.")
kernel_dense, bias_dense = self._fuse_bn_tensor(self.rbr_dense_conv, self.rbr_dense_bn)
kernel_1x1_unpadded, bias_1x1 = self._fuse_bn_tensor(self.rbr_1x1_conv, self.rbr_1x1_bn)
pad_amount = self.config_kernel_size // 2
kernel_1x1_padded = tf.pad(kernel_1x1_unpadded, [[pad_amount,pad_amount],[pad_amount,pad_amount],[0,0],[0,0]])
final_kernel = kernel_dense + kernel_1x1_padded; final_bias = bias_dense + bias_1x1
if self.rbr_identity_bn is not None:
running_mean_id = self.rbr_identity_bn.moving_mean; running_var_id = self.rbr_identity_bn.moving_variance
gamma_id = self.rbr_identity_bn.gamma; beta_id = self.rbr_identity_bn.beta
epsilon_id = self.rbr_identity_bn.epsilon; std_id = tf.sqrt(running_var_id + epsilon_id)
kernel_id_scaler = gamma_id / std_id
bias_id_term = beta_id - (running_mean_id * gamma_id) / std_id
identity_kernel_np = np.zeros((self.config_kernel_size,self.config_kernel_size,self.actual_in_channels,self.config_out_channels),dtype=np.float32)
for i in range(self.actual_in_channels): identity_kernel_np[pad_amount,pad_amount,i,i] = kernel_id_scaler[i].numpy()
kernel_id_final = tf.convert_to_tensor(identity_kernel_np, dtype=tf.float32)
final_kernel += kernel_id_final; final_bias += bias_id_term
if not self.rbr_reparam.built: raise Exception(f"CRITICAL ERROR: {self.rbr_reparam.name} not built before set_weights.")
self.rbr_reparam.set_weights([final_kernel, final_bias]); self._deploy_mode_internal = True
def get_config(self):
config = super(RepVGGBlock, self).get_config()
config.update({
"in_channels": self.config_initial_in_channels, "out_channels": self.config_out_channels,
"kernel_size": self.config_kernel_size, "stride": self.config_strides_val,
"groups": self.config_groups, "deploy": self._deploy_mode_internal, "use_se": self.config_use_se
}); return config
@classmethod
def from_config(cls, config): return cls(**config)
# --- End of RepVGGBlock ---
# --- NECALayer Class Definition (Verified Version) ---
class NECALayer(layers.Layer):
def __init__(self, channels, gamma=2, b=1, **kwargs):
super(NECALayer, self).__init__(**kwargs)
self.channels = channels; self.gamma = gamma; self.b = b
tf_channels = tf.cast(self.channels, tf.float32)
k_float = (tf.math.log(tf_channels) / tf.math.log(2.0) + self.b) / self.gamma
k_int = tf.cast(tf.round(k_float), tf.int32)
if tf.equal(k_int % 2, 0): self.k_scalar_val = k_int + 1
else: self.k_scalar_val = k_int
self.k_scalar_val = tf.maximum(1, self.k_scalar_val)
kernel_size_for_conv1d = (int(self.k_scalar_val.numpy()),)
self.gap = layers.GlobalAveragePooling2D(keepdims=True)
self.conv1d = layers.Conv1D(filters=1, kernel_size=kernel_size_for_conv1d, padding='same', use_bias=False, name=self.name + '_eca_conv1d')
self.sigmoid = layers.Activation('sigmoid')
def call(self, inputs):
if self.channels != inputs.shape[-1]: raise ValueError(f"Input channels {inputs.shape[-1]} != layer channels {self.channels} for {self.name}")
x = self.gap(inputs); x = tf.squeeze(x, axis=[1,2]); x = tf.expand_dims(x, axis=-1)
x = self.conv1d(x); x = tf.squeeze(x, axis=-1); attention = self.sigmoid(x)
return inputs * tf.reshape(attention, [-1, 1, 1, self.channels])
def get_config(self):
config = super(NECALayer, self).get_config()
config.update({"channels": self.channels, "gamma": self.gamma, "b": self.b}); return config
@classmethod
def from_config(cls, config): return cls(**config)
# --- End of NECALayer ---
# --- Streamlit App Configuration ---
MODEL_FILENAME = 'genera_cic_v1.keras'
LABEL_MAPPING_FILENAME = 'label_mapping.json'
IMG_WIDTH = 299
IMG_HEIGHT = 299
st.set_page_config(page_title="Genera Cloud Classifier", layout="wide")
# --- Load Model and Label Mapping (Cached for performance) ---
@st.cache_resource
def load_keras_model(model_path):
"""Loads the Keras model with custom layer definitions."""
if not os.path.exists(model_path):
st.error(f"Model file not found: {model_path}")
st.error(f"Please ensure '{model_path}' is in the same directory as this script, or update the path.")
return None
try:
custom_objects = {'RepVGGBlock': RepVGGBlock, 'NECALayer': NECALayer}
model = tf.keras.models.load_model(model_path, custom_objects=custom_objects, compile=False)
print("Model loaded successfully.")
return model
except Exception as e:
st.error(f"Error loading Keras model from '{model_path}': {e}")
st.error("Make sure the custom layer definitions (RepVGGBlock, NECALayer) are correct and match the saved model.")
return None
@st.cache_data
def load_label_map(mapping_path):
"""Loads the label mapping from a JSON file."""
if not os.path.exists(mapping_path):
st.error(f"Label mapping file not found: {mapping_path}")
st.error(f"Please ensure '{mapping_path}' is in the same directory as this script, or update the path.")
return None
try:
with open(mapping_path, 'r') as f:
label_data = json.load(f)
# Ensure int_to_label keys are integers, as they might be saved as strings in JSON
int_to_label = {int(k): v for k, v in label_data['int_to_label'].items()}
return int_to_label
except Exception as e:
st.error(f"Error loading label mapping from '{mapping_path}': {e}")
return None
# Load resources
model = load_keras_model(MODEL_FILENAME)
int_to_label = load_label_map(LABEL_MAPPING_FILENAME)
# --- Image Preprocessing Function ---
def preprocess_for_prediction(image_pil, target_size=(IMG_HEIGHT, IMG_WIDTH)):
"""Prepares a PIL image for model prediction."""
img = image_pil.convert('RGB') # Ensure 3 channels
img_resized = img.resize(target_size)
img_array = np.array(img_resized, dtype=np.float32)
img_array = img_array / 255.0 # Normalize to [0, 1]
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
# --- Streamlit App UI ---
st.title("☁️ Genera - Cloud Classifier 🌥️")
st.markdown("Upload an image of the sky, and this app will predict the dominant cloud genus.")
# Check if model and labels loaded successfully before proceeding
if model is None or int_to_label is None:
st.error("Application cannot start due to errors loading model or label mapping. Please check the console/logs for details.")
else:
uploaded_file = st.file_uploader("Choose a cloud image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
image_pil = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image_pil, caption='Uploaded Image.', use_container_width=True)
# Preprocess and predict
with st.spinner('Analyzing the sky...'):
processed_image_tensor = preprocess_for_prediction(image_pil)
predictions = model.predict(processed_image_tensor)
pred_probabilities = predictions[0] # Get probabilities for the single uploaded image
with col2:
st.subheader("🔍 Prediction Results:")
# Display top N predictions with confidence
top_n = 5 # Show top 5 predictions
# Get indices of sorted probabilities (highest first)
sorted_indices = np.argsort(pred_probabilities)[::-1]
for i in range(min(top_n, len(pred_probabilities))):
class_index = sorted_indices[i]
class_name = int_to_label.get(class_index, f"Unknown Class ({class_index})")
confidence = pred_probabilities[class_index]
st.markdown(f"**{class_name}**: `{confidence*100:.2f}%`")
# Highlight the top prediction
top_pred_idx = sorted_indices[0]
top_class_name = int_to_label.get(top_pred_idx, "Unknown Class")
top_confidence = pred_probabilities[top_pred_idx]
st.success(f"**Top Prediction: {top_class_name} ({top_confidence*100:.2f}%)**")
except Exception as e:
st.error(f"An error occurred during image processing or prediction: {e}")
st.error("Please ensure the uploaded file is a valid image format (JPG, JPEG, PNG).")
else:
st.info("Please upload an image to classify.")
st.markdown("---")
st.markdown("Developed as part of the Personalized Weather Intelligence project.")