""" Neural network modules for the HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis For more details: https://arxiv.org/pdf/2010.05646.pdf, https://arxiv.org/abs/2406.10735 Authors * Jarod Duret 2021 * Yingzhi WANG 2022 """ # Adapted from https://github.com/jik876/hifi-gan/ and https://github.com/coqui-ai/TTS/ # MIT License # Copyright (c) 2020 Jungil Kong # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import json import logging import math import os from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F LRELU_SLOPE = 0.1 def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int): """This function computes the number of elements to add for zero-padding. Arguments --------- L_in : int stride: int kernel_size : int dilation : int Returns ------- padding : int The size of the padding to be added """ if stride > 1: padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)] else: L_out = ( math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1 ) padding = [ math.floor((L_in - L_out) / 2), math.floor((L_in - L_out) / 2), ] return padding def get_padding_elem_transposed( L_out: int, L_in: int, stride: int, kernel_size: int, dilation: int, output_padding: int, ): """This function computes the required padding size for transposed convolution Arguments --------- L_out : int L_in : int stride: int kernel_size : int dilation : int output_padding : int Returns ------- padding : int The size of the padding to be applied """ padding = -0.5 * ( L_out - (L_in - 1) * stride - dilation * (kernel_size - 1) - output_padding - 1 ) return int(padding) class Conv1d(nn.Module): """This function implements 1d convolution. Arguments --------- out_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. "causal" results in causal (dilated) convolutions. groups : int Number of blocked connections from input channels to output channels. bias : bool Whether to add a bias term to convolution operation. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. skip_transpose : bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference conv_init : str Weight initialization for the convolution network default_padding: str or int This sets the default padding mode that will be used by the pytorch Conv1d backend. Example ------- >>> inp_tensor = torch.rand([10, 40, 16]) >>> cnn_1d = Conv1d( ... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5 ... ) >>> out_tensor = cnn_1d(inp_tensor) >>> out_tensor.shape torch.Size([10, 40, 8]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", skip_transpose=False, weight_norm=False, conv_init=None, default_padding=0, ): super().__init__() self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.unsqueeze = False self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) self.in_channels = in_channels self.conv = nn.Conv1d( in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=default_padding, groups=groups, bias=bias, ) if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight) elif conv_init == "zero": nn.init.zeros_(self.conv.weight) elif conv_init == "normal": nn.init.normal_(self.conv.weight, std=1e-6) if weight_norm: self.conv = nn.utils.weight_norm(self.conv) def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. Returns ------- wx : torch.Tensor The convolved outputs. """ if not self.skip_transpose: x = x.transpose(1, -1) if self.unsqueeze: x = x.unsqueeze(1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size - 1) * self.dilation x = F.pad(x, (num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same', 'valid' or 'causal'. Got " + self.padding ) wx = self.conv(x) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) return wx def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int): """This function performs zero-padding on the time axis such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input tensor. kernel_size : int Size of kernel. dilation : int Dilation used. stride : int Stride. Returns ------- x : torch.Tensor The padded outputs. """ # Detecting input shape L_in = self.in_channels # Time padding padding = get_padding_elem(L_in, stride, kernel_size, dilation) # Applying padding x = F.pad(x, padding, mode=self.padding_mode) return x def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: self.unsqueeze = True in_channels = 1 elif self.skip_transpose: in_channels = shape[1] elif len(shape) == 3: in_channels = shape[2] else: raise ValueError( "conv1d expects 2d, 3d inputs. Got " + str(len(shape)) ) # Kernel size must be odd if not self.padding == "valid" and self.kernel_size % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv) class Conv2d(nn.Module): """This function implements 2d convolution. Arguments --------- out_channels : int It is the number of output channels. kernel_size : tuple Kernel size of the 2d convolutional filters over time and frequency axis. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride: int Stride factor of the 2d convolutional filters over time and frequency axis. dilation : int Dilation factor of the 2d convolutional filters over time and frequency axis. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is same as input shape. If "causal" then proper padding is inserted to simulate causal convolution on the first spatial dimension. (spatial dim 1 is dim 3 for both skip_transpose=False and skip_transpose=True) groups : int This option specifies the convolutional groups. See torch.nn documentation for more information. bias : bool If True, the additive bias b is adopted. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. max_norm : float kernel max-norm. swap : bool If True, the convolution is done with the format (B, C, W, H). If False, the convolution is dine with (B, H, W, C). Active only if skip_transpose is False. skip_transpose : bool If False, uses batch x spatial.dim2 x spatial.dim1 x channel convention of speechbrain. If True, uses batch x channel x spatial.dim1 x spatial.dim2 convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference conv_init : str Weight initialization for the convolution network Example ------- >>> inp_tensor = torch.rand([10, 40, 16, 8]) >>> cnn_2d = Conv2d( ... input_shape=inp_tensor.shape, out_channels=5, kernel_size=(7, 3) ... ) >>> out_tensor = cnn_2d(inp_tensor) >>> out_tensor.shape torch.Size([10, 40, 16, 5]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=(1, 1), dilation=(1, 1), padding="same", groups=1, bias=True, padding_mode="reflect", max_norm=None, swap=False, skip_transpose=False, weight_norm=False, conv_init=None, ): super().__init__() # handle the case if some parameter is int if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(stride, int): stride = (stride, stride) if isinstance(dilation, int): dilation = (dilation, dilation) self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.unsqueeze = False self.max_norm = max_norm self.swap = swap self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input(input_shape) self.in_channels = in_channels # Weights are initialized following pytorch approach self.conv = nn.Conv2d( self.in_channels, out_channels, self.kernel_size, stride=self.stride, padding=0, dilation=self.dilation, groups=groups, bias=bias, ) if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight) elif conv_init == "zero": nn.init.zeros_(self.conv.weight) if weight_norm: self.conv = nn.utils.weight_norm(self.conv) def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. Returns ------- x : torch.Tensor The output of the convolution. """ if not self.skip_transpose: x = x.transpose(1, -1) if self.swap: x = x.transpose(-1, -2) if self.unsqueeze: x = x.unsqueeze(1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size[0] - 1) * self.dilation[1] x = F.pad(x, (0, 0, num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same','valid' or 'causal'. Got " + self.padding ) if self.max_norm is not None: self.conv.weight.data = torch.renorm( self.conv.weight.data, p=2, dim=0, maxnorm=self.max_norm ) wx = self.conv(x) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) if self.swap: wx = wx.transpose(1, 2) return wx def _manage_padding( self, x, kernel_size: Tuple[int, int], dilation: Tuple[int, int], stride: Tuple[int, int], ): """This function performs zero-padding on the time and frequency axes such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input to be padded kernel_size : int Size of the kernel for computing padding dilation : int Dilation rate for computing padding stride: int Stride for computing padding Returns ------- x : torch.Tensor The padded outputs. """ # Detecting input shape L_in = self.in_channels # Time padding padding_time = get_padding_elem( L_in, stride[-1], kernel_size[-1], dilation[-1] ) padding_freq = get_padding_elem( L_in, stride[-2], kernel_size[-2], dilation[-2] ) padding = padding_time + padding_freq # Applying padding x = nn.functional.pad(x, padding, mode=self.padding_mode) return x def _check_input(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 3: self.unsqueeze = True in_channels = 1 elif len(shape) == 4: in_channels = shape[3] else: raise ValueError("Expected 3d or 4d inputs. Got " + len(shape)) # Kernel size must be odd if not self.padding == "valid" and ( self.kernel_size[0] % 2 == 0 or self.kernel_size[1] % 2 == 0 ): raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv) class ConvTranspose1d(nn.Module): """This class implements 1d transposed convolution with speechbrain. Transpose convolution is normally used to perform upsampling. Arguments --------- out_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride : int Stride factor of the convolutional filters. When the stride factor > 1, upsampling in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str or int To have in output the target dimension, we suggest tuning the kernel size and the padding properly. We also support the following function to have some control over the padding and the corresponding output dimensionality. if "valid", no padding is applied if "same", padding amount is inferred so that the output size is closest to possible to input size. Note that for some kernel_size / stride combinations it is not possible to obtain the exact same size, but we return the closest possible size. if "factor", padding amount is inferred so that the output size is closest to inputsize*stride. Note that for some kernel_size / stride combinations it is not possible to obtain the exact size, but we return the closest possible size. if an integer value is entered, a custom padding is used. output_padding : int, Additional size added to one side of the output shape groups: int Number of blocked connections from input channels to output channels. Default: 1 bias: bool If True, adds a learnable bias to the output skip_transpose : bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference Example ------- >>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d >>> inp_tensor = torch.rand([10, 12, 40]) #[batch, time, fea] >>> convtranspose_1d = ConvTranspose1d( ... input_shape=inp_tensor.shape, out_channels=8, kernel_size=3, stride=2 ... ) >>> out_tensor = convtranspose_1d(inp_tensor) >>> out_tensor.shape torch.Size([10, 25, 8]) >>> # Combination of Conv1d and ConvTranspose1d >>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d >>> signal = torch.tensor([1,100]) >>> signal = torch.rand([1,100]) #[batch, time] >>> conv1d = Conv1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2) >>> conv_out = conv1d(signal) >>> conv_t = ConvTranspose1d(input_shape=conv_out.shape, out_channels=1, kernel_size=3, stride=2, padding=1) >>> signal_rec = conv_t(conv_out, output_size=[100]) >>> signal_rec.shape torch.Size([1, 100]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding='same') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 115]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='valid') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 235]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='factor') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 231]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding=10) >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 211]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding=0, output_padding=0, groups=1, bias=True, skip_transpose=False, weight_norm=False, ): super().__init__() self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.unsqueeze = False self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) if self.padding == "same": L_in = input_shape[-1] if skip_transpose else input_shape[1] padding_value = get_padding_elem_transposed( L_in, L_in, stride=stride, kernel_size=kernel_size, dilation=dilation, output_padding=output_padding, ) elif self.padding == "factor": L_in = input_shape[-1] if skip_transpose else input_shape[1] padding_value = get_padding_elem_transposed( L_in * stride, L_in, stride=stride, kernel_size=kernel_size, dilation=dilation, output_padding=output_padding, ) elif self.padding == "valid": padding_value = 0 elif type(self.padding) is int: padding_value = padding else: raise ValueError("Not supported padding type") self.conv = nn.ConvTranspose1d( in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=padding_value, groups=groups, bias=bias, ) if weight_norm: self.conv = nn.utils.weight_norm(self.conv) def forward(self, x, output_size=None): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. output_size : int The size of the output Returns ------- x : torch.Tensor The convolved output """ if not self.skip_transpose: x = x.transpose(1, -1) if self.unsqueeze: x = x.unsqueeze(1) wx = self.conv(x, output_size=output_size) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) return wx def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: self.unsqueeze = True in_channels = 1 elif self.skip_transpose: in_channels = shape[1] elif len(shape) == 3: in_channels = shape[2] else: raise ValueError( "conv1d expects 2d, 3d inputs. Got " + str(len(shape)) ) return in_channels def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv) class ResBlock1(torch.nn.Module): """ Residual Block Type 1, which has 3 convolutional layers in each convolution block. Arguments --------- channels : int number of hidden channels for the convolutional layers. kernel_size : int size of the convolution filter in each layer. dilation : list list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.convs1 = nn.ModuleList( [ Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=dilation[0], padding="same", skip_transpose=True, weight_norm=True, ), Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=dilation[1], padding="same", skip_transpose=True, weight_norm=True, ), Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=dilation[2], padding="same", skip_transpose=True, weight_norm=True, ), ] ) self.convs2 = nn.ModuleList( [ Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=1, padding="same", skip_transpose=True, weight_norm=True, ), Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=1, padding="same", skip_transpose=True, weight_norm=True, ), Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=1, padding="same", skip_transpose=True, weight_norm=True, ), ] ) def forward(self, x): """Returns the output of ResBlock1 Arguments --------- x : torch.Tensor (batch, channel, time) input tensor. Returns ------- The ResBlock outputs """ for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): """This functions removes weight normalization during inference.""" for layer in self.convs1: layer.remove_weight_norm() for layer in self.convs2: layer.remove_weight_norm() class ResBlock2(torch.nn.Module): """ Residual Block Type 2, which has 2 convolutional layers in each convolution block. Arguments --------- channels : int number of hidden channels for the convolutional layers. kernel_size : int size of the convolution filter in each layer. dilation : list list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.convs = nn.ModuleList( [ Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=dilation[0], padding="same", skip_transpose=True, weight_norm=True, ), Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, dilation=dilation[1], padding="same", skip_transpose=True, weight_norm=True, ), ] ) def forward(self, x): """Returns the output of ResBlock1 Arguments --------- x : torch.Tensor (batch, channel, time) input tensor. Returns ------- The ResBlock outputs """ for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): """This functions removes weight normalization during inference.""" for layer in self.convs: layer.remove_weight_norm() class HiFiGANArabicGenerator(torch.nn.Module): """HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) Arguments --------- in_channels : int number of input tensor channels. out_channels : int number of output tensor channels. resblock_type : str type of the `ResBlock`. '1' or '2'. resblock_dilation_sizes : List[List[int]] list of dilation values in each layer of a `ResBlock`. resblock_kernel_sizes : List[int] list of kernel sizes for each `ResBlock`. upsample_kernel_sizes : List[int] list of kernel sizes for each transposed convolution. upsample_initial_channel : int number of channels for the first upsampling layer. This is divided by 2 for each consecutive upsampling layer. upsample_factors : List[int] upsampling factors (stride) for each upsampling layer. inference_padding : int constant padding applied to the input at inference time. Defaults to 5. cond_channels : int If provided, adds a conv layer to the beginning of the forward. conv_post_bias : bool Whether to add a bias term to the final conv. Example ------- >>> inp_tensor = torch.rand([4, 80, 33]) >>> hifigan_generator= HifiganGenerator( ... in_channels = 80, ... out_channels = 1, ... resblock_type = "1", ... resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], ... resblock_kernel_sizes = [3, 7, 11], ... upsample_kernel_sizes = [16, 16, 4, 4], ... upsample_initial_channel = 512, ... upsample_factors = [8, 8, 2, 2], ... ) >>> out_tensor = hifigan_generator(inp_tensor) >>> out_tensor.shape torch.Size([4, 1, 8448]) """ def __init__( self, in_channels, out_channels, resblock_type, resblock_dilation_sizes, resblock_kernel_sizes, upsample_kernel_sizes, upsample_initial_channel, upsample_factors, inference_padding=5, cond_channels=0, conv_post_bias=True, ): super().__init__() self.inference_padding = inference_padding self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_factors) # initial upsampling layers self.conv_pre = Conv1d( in_channels=in_channels, out_channels=upsample_initial_channel, kernel_size=7, stride=1, padding="same", skip_transpose=True, weight_norm=True, ) resblock = ResBlock1 if resblock_type == "1" else ResBlock2 # upsampling layers self.ups = nn.ModuleList() for i, (u, k) in enumerate( zip(upsample_factors, upsample_kernel_sizes) ): self.ups.append( ConvTranspose1d( in_channels=upsample_initial_channel // (2**i), out_channels=upsample_initial_channel // (2 ** (i + 1)), kernel_size=k, stride=u, padding=(k - u) // 2, skip_transpose=True, weight_norm=True, ) ) # MRF blocks self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for _, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes) ): self.resblocks.append(resblock(ch, k, d)) # post convolution layer self.conv_post = Conv1d( in_channels=ch, out_channels=1, kernel_size=7, stride=1, padding="same", skip_transpose=True, bias=conv_post_bias, weight_norm=True, ) if cond_channels > 0: self.cond_layer = Conv1d( in_channels=cond_channels, out_channels=upsample_initial_channel, kernel_size=1, ) def forward(self, x, g=None): """ Arguments --------- x : torch.Tensor (batch, channel, time) feature input tensor. g : torch.Tensor (batch, 1, time) global conditioning input tensor. Returns ------- The generator outputs """ o = self.conv_pre(x) if hasattr(self, "cond_layer"): o = o + self.cond_layer(g) for i in range(self.num_upsamples): o = F.leaky_relu(o, LRELU_SLOPE) o = self.ups[i](o) z_sum = None for j in range(self.num_kernels): if z_sum is None: z_sum = self.resblocks[i * self.num_kernels + j](o) else: z_sum += self.resblocks[i * self.num_kernels + j](o) o = z_sum / self.num_kernels o = F.leaky_relu(o) o = self.conv_post(o) o = torch.tanh(o) return o def remove_weight_norm(self): """This functions removes weight normalization during inference.""" for layer in self.ups: layer.remove_weight_norm() for layer in self.resblocks: layer.remove_weight_norm() self.conv_pre.remove_weight_norm() self.conv_post.remove_weight_norm() @torch.no_grad() def inference(self, c, padding=True): """The inference function performs a padding and runs the forward method. Arguments --------- c : torch.Tensor (batch, channel, time) feature input tensor. padding : bool Whether to pad tensor before forward. Returns ------- The generator outputs """ if padding: c = torch.nn.functional.pad( c, (self.inference_padding, self.inference_padding), "replicate" ) return self.forward(c) @classmethod def from_pretrained(cls, checkpoint_path, config_path=None, device='cpu'): if config_path is None: config_path = os.path.join(os.path.dirname(__file__), "config.json") with open(config_path, "r") as file: config = json.load(file) model = cls(**config) ckpt = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(ckpt) return model.eval().to(device) if __name__ == '__main__': gen = HifiganGenerator.from_pretrained("generator.ckpt", "config.json") x = torch.rand(1, 80, 122) mel = gen(x)