Commit
·
31ef75a
1
Parent(s):
fac01f3
PPO Lunarlander 2 million steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-2M.zip +3 -0
- ppo-LunarLander-v2-2M/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-2M/data +99 -0
- ppo-LunarLander-v2-2M/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-2M/policy.pth +3 -0
- ppo-LunarLander-v2-2M/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-2M/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 285.64 +/- 20.38
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc89c86b370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc89c86b400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc89c86b490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc89c86b520>", "_build": "<function ActorCriticPolicy._build at 0x7fc89c86b5b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc89c86b640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc89c86b6d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc89c86b760>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc89c86b7f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc89c86b880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc89c86b910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc89c86b9a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc89c857f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686707559311666571, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrRIL5hnso7HIGsuS7LTjc0fmu90BDWOAAAgD8AAIA/RtEOvlK4+DqIqKo7RLJquRoBrLwr1186AACAPwAAgD/mCw49KdAxui09GryV3oI2KVmUO+DA8bUAAIA/AACAP3PCSr6PKX28ZJvBuqLb/riKFeI9CkXGOQAAgD8AAIA/LZ19PrWtVD8Nh9U9UpjDvuhv6j2CDxq9AAAAAAAAAAAAvki+j28JO2W57DncCAq3n6TVvP2G1TcAAIA/AACAP8DC473DfX66Sqm+ulX/kDTpTIG77W/aOQAAgD8AAAAAwNwLvj3Nhj/b4VS9PQIFv7wbKL6WP2i8AAAAAAAAAADNpEI+6d4vvAKlgjg+uzK20Ci5vZL7o7cAAIA/AACAP83S5T1c6zW6YnhpNgY2EDV3PUa6pmq4MgAAgD8AAIA/DXgOPhSohzv6R+O5t7dKt/oVJz0UCRE5AACAPwAAgD8AbC88e/qQurBukrreqoW1BWyeupbCqTkAAIA/AACAP03QKb5c+F68MKUWu+SQPLlANdY9iAtHOgAAgD8AAIA/miekvPb8WrpdCsg7oPutOUBoWLu5iKU4AACAPwAAgD+t/xG+XHJ9O7Yc7TubYQW6pE0WvdjD8ToAAIA/AACAP2Z7OL6mh6g+Xr2mPSLzUL5rAck9RuavPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDfpaHKwIMWMAWyUTSwBjAF0lEdAkYc6MR6F/XV9lChoBkdAa8w/M4cWCWgHTdwBaAhHQJGHeZuyeI51fZQoaAZHQGG1qvFFUhpoB03oA2gIR0CRh87cO9WZdX2UKGgGR0BgKjaTOgQIaAdN6ANoCEdAkY7ac3EQ5HV9lChoBkdAZO8S+xnnMmgHTegDaAhHQJGicVVPva11fZQoaAZHQCoZQgs9SuRoB0vSaAhHQJGkuitaIN51fZQoaAZHQGpREit7rs1oB01qAmgIR0CRqAYbbUPQdX2UKGgGR0BeSiY5T6zmaAdN6ANoCEdAkalye/YapHV9lChoBkdAW7tm29cry2gHTegDaAhHQJGqW2G7Bft1fZQoaAZHQGJdTG5tm+VoB03oA2gIR0CRqqP9kz42dX2UKGgGR0Bi2vr2QGOdaAdN6ANoCEdAkas0auOjqXV9lChoBkdAYWG0a6z3RGgHTegDaAhHQJGs5JEpiJB1fZQoaAZHwCEKAWi1y/9oB0v+aAhHQJGwKHfuTid1fZQoaAZHQFnXhmoR7JJoB03oA2gIR0CRsNR/3FkydX2UKGgGR8AWiKqGUOd5aAdL8mgIR0CRtH0j1PFedX2UKGgGR0BeE8gZCOWCaAdN6ANoCEdAkcn/Tw2ETXV9lChoBkc/+2xxDLKV6mgHTQ0BaAhHQJHMUYht+Ct1fZQoaAZHQGqVO3+dbxFoB02WAWgIR0CR0DMOf/WEdX2UKGgGR0BcdAKOT7l8aAdN6ANoCEdAkdie8K5TZXV9lChoBkdAW0jdM0xdp2gHTegDaAhHQJHZUd+5OJt1fZQoaAZHQGBsVIZqEe1oB03oA2gIR0CR2XTvAoG6dX2UKGgGR0BhaFi8WbgCaAdN6ANoCEdAkdvpLM9r43V9lChoBkdAYQhMmnfl62gHTegDaAhHQJHcJmXgLql1fZQoaAZHQGLEAX2ugYhoB03oA2gIR0CR4Wr8R+SbdX2UKGgGR0BU7ubmU4aQaAdN6ANoCEdAkfk8feUILXV9lChoBkdAYhSxnFo+OmgHTegDaAhHQJIAbdk8Rth1fZQoaAZHQF95OYIBzWBoB03oA2gIR0CSAefbsWwedX2UKGgGR0Bdx5MpPRAsaAdN6ANoCEdAkgJCSJTESHV9lChoBkdAYrT29L6DXmgHTegDaAhHQJIDIIBzV+Z1fZQoaAZHQGHshI4EOiFoB03oA2gIR0CSBV4L1EmZdX2UKGgGR0BpTp2MbWEsaAdNuQFoCEdAkge8LBsQ/XV9lChoBkdAYyxXrdFfA2gHTegDaAhHQJIJd4X40uV1fZQoaAZHQEXik3S8an9oB0vFaAhHQJINxZmqYJF1fZQoaAZHQG1Gkt29tdloB01vAWgIR0CSF+7RfF72dX2UKGgGR0Bk1QoiLVFyaAdN6ANoCEdAkhyA6Mir1nV9lChoBkdAX810Lc9GJGgHTegDaAhHQJIekdeY2Kl1fZQoaAZHQGJbjyOJcgRoB03oA2gIR0CSIdW7voeQdX2UKGgGR0Bf6xVQyhzvaAdN6ANoCEdAkimhKcurZXV9lChoBkdAY0hhaTwDvGgHTegDaAhHQJIqS+VTrE91fZQoaAZHQCcknNPgvUVoB0vMaAhHQJIrmw/xDst1fZQoaAZHQGKWi0v4/NZoB03oA2gIR0CSLWgYxcmjdX2UKGgGR0BbPhigCfYjaAdN6ANoCEdAki2+zdDYy3V9lChoBkdAPd7/0dzXBmgHS9xoCEdAkjFBL0z0pXV9lChoBkdAYmfsoDxLCmgHTegDaAhHQJI1z49HMEB1fZQoaAZHQGLpPVd5Y5loB03oA2gIR0CSTyGfPHDKdX2UKGgGR0BgsnCO3lS1aAdN6ANoCEdAklSknkT6BXV9lChoBkdAYGFczqKP4mgHTegDaAhHQJJVwMNMGot1fZQoaAZHQG58TfixVyZoB01yAWgIR0CSVmxx1gYxdX2UKGgGR0Bgq/XK8tf5aAdN6ANoCEdAkliJGe+VT3V9lChoBkdAYc4NQ0oBrGgHTegDaAhHQJJa8zsQd0d1fZQoaAZHQGTvRaouPFNoB03oA2gIR0CSXLl90A93dX2UKGgGR0Bm8FdJJ5E/aAdNUQFoCEdAkl0Bouf29XV9lChoBkdAZLKlolD4QGgHTegDaAhHQJJhGptJnQJ1fZQoaAZHQD6t/vv0AcVoB0vqaAhHQJJnvWCmMwV1fZQoaAZHQGG2NzCDVYpoB03oA2gIR0CSa0WvKU3XdX2UKGgGR0BiDJEF4cFRaAdN6ANoCEdAknEYdELH/HV9lChoBkdAXv6JZW7vomgHTegDaAhHQJKCTMdLg4x1fZQoaAZHQGHqNa6jFhpoB03oA2gIR0CSg8vphWo4dX2UKGgGR0BfOmCEpRXPaAdN6ANoCEdAkoUsguAZsXV9lChoBkdAYS2CBf8dgmgHTegDaAhHQJKFaexwAEN1fZQoaAZHQGEzInBtUGVoB03oA2gIR0CSiBUy57PZdX2UKGgGR0Bv7Hva11GLaAdNggFoCEdAko0HF1jiGXV9lChoBkdAXpTLfUF0P2gHTegDaAhHQJKRpOSGJvZ1fZQoaAZHQGIWVBD5TIhoB03oA2gIR0CSqE3xnWaudX2UKGgGR0BhcvWH1vl2aAdN6ANoCEdAkqnXzQNTcnV9lChoBkdAYJyyKNyYHGgHTegDaAhHQJKq5gv114h1fZQoaAZHQGBpBOxjawloB03oA2gIR0CSrjwCr92pdX2UKGgGR0BkJugQHzH0aAdN6ANoCEdAkrWS1qnFYXV9lChoBkdAYCsH1OCXhWgHTegDaAhHQJK2BFspG4J1fZQoaAZHQF1kSRr8BMloB03oA2gIR0CSu2Jq7AcldX2UKGgGR0BhBTBXS0BwaAdN6ANoCEdAksNN2X9it3V9lChoBkdAXiqIN3GGVWgHTegDaAhHQJLGLW3BpHt1fZQoaAZHQEU9M/QjUutoB00RAWgIR0CS1puh9LHudX2UKGgGR0BkXruIAOriaAdN6ANoCEdAktpRLPD503V9lChoBkdAYpRMzMzMzWgHTegDaAhHQJLbwnCwbER1fZQoaAZHQGJqeizsyBVoB03oA2gIR0CS3TzeoDPodX2UKGgGR0Bh0uCCjDbbaAdN6ANoCEdAkt165CngpHV9lChoBkdAYklnGKhtcmgHTegDaAhHQJLgO4wyqMp1fZQoaAZHQGMIZUT+NtJoB03oA2gIR0CS5oiM5wOwdX2UKGgGR0BiP2okzGgjaAdN6ANoCEdAkuzMkMTewnV9lChoBkdAQODTx5LRKGgHS9VoCEdAku1CQxN7B3V9lChoBkfALoBEjPfKp2gHS/9oCEdAkwHSZSeiBXV9lChoBkdAYjTM8HObAmgHTegDaAhHQJMDcBjnV5N1fZQoaAZHQF0/B1s+FDhoB03oA2gIR0CTBF5ZKWcCdX2UKGgGR0Bi1hffGdZraAdN6ANoCEdAkwUB9srNGHV9lChoBkdAbIM/zreImGgHTSIBaAhHQJMF3MaCL/F1fZQoaAZHQFjNs7dSEUVoB03oA2gIR0CTBqqsEJSjdX2UKGgGR0BiZFrbg0j1aAdN6ANoCEdAkwnff0mMO3V9lChoBkdAZjrNiYsunWgHTegDaAhHQJMKIDV6NVB1fZQoaAZHQETHa9K28ZloB0vdaAhHQJMLv8Muvll1fZQoaAZHQGHWU1yeZohoB03oA2gIR0CTDVwvxpcpdX2UKGgGR8AjnqOcUdq+aAdL0WgIR0CTDrKw6hg3dX2UKGgGR0BjkEoYvWYnaAdN6ANoCEdAkxV/wRXfZXV9lChoBkdAbEsGdqcmSmgHTYABaAhHQJMZXPeHi3p1fZQoaAZHQGLvMuFpPARoB03oA2gIR0CTKDmxdIGydX2UKGgGR0BgpMwxnFo+aAdN6ANoCEdAky1waaTfSHV9lChoBkdAYrXFy7wrlWgHTegDaAhHQJMvbKYAsCl1fZQoaAZHQGHMdLHuJDVoB03oA2gIR0CTObPLxI8RdX2UKGgGR0Bc464+bExZaAdN6ANoCEdAkz76k2xY73V9lChoBkdAYdUz41xbS2gHTegDaAhHQJM/YB0ZFXt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efe6133bb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe6133bbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe6133bc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe6133bd00>", "_build": "<function ActorCriticPolicy._build at 0x7efe6133bd90>", "forward": "<function ActorCriticPolicy.forward at 0x7efe6133be20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efe6133beb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe6133bf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7efe61344040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe613440d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe61344160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe613441f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efe6133d540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686789372639714411, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGayojsUqoG6zPUvMzdvtC9sFvG6S2zJswAAgD8AAIA/Ztm4vBSYq7poRwy2s1UCsgrDq7qEIR01AACAPwAAgD9Ntjk9ww2wPlPRa7278a2+58aavN18D7sAAAAAAAAAAJo7kT3Qlfs+NHOVvbOdtL4adiY93jDUvQAAAAAAAAAAMzmDvc+xjz9AKKa9ykcTv0v+Gb61W3U9AAAAAAAAAAAmM4U9yHbPvAcIOr3hgCu9zn+Cve6sI74AAIA/AACAP9poJD6TD1Y/9ukavGCj8754wRc+bIqYvQAAAAAAAAAATflyvZHIzj4mJps+wS+ZvqFfYj5N0fc9AAAAAAAAAADmqBY9RAGbPiWPkTxWUZm+adaPPRXV+7wAAAAAAAAAAE3Adz0mVIY+8agxviTInb7R3rG91T9ivQAAAAAAAAAATfFqPZFHnj/OFnk+Pe8Mv69/pT11go09AAAAAAAAAADNnig91wMquRZYXTmt9ec09YfvO4v7hLgAAIA/AACAP6B+kT6bqTE/Gy3FvkG2676wlZg9y0R9vgAAAAAAAAAAAKNTvdeh9T7zdmu98AGnvoM0x72DSJI8AAAAAAAAAACA/zm9e1eQPuaS5z3j6qa+IylePIS3oz0AAAAAAAAAAJofoLy8Xqw/KbSZvpoFC795/967pmn3vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCLZxaPjn6MAWyUTQkBjAF0lEdAoaSqz5XU6XV9lChoBkdAcm2Aeq7yx2gHTQMBaAhHQKGk5shxHXp1fZQoaAZHQHCq7BbfP5ZoB0vyaAhHQKGl/Em6XjV1fZQoaAZHQHFeclLOAy5oB0vFaAhHQKGmc33Hq/x1fZQoaAZHQHI0WucMEzRoB0vfaAhHQKGmv7655JN1fZQoaAZHQHF7gDV6NVBoB00XAWgIR0ChpsQ/PgNxdX2UKGgGR0ByhwALiMo+aAdL+2gIR0Chpv6TwDvFdX2UKGgGR0Bxsa+bmU4aaAdL8mgIR0Chpx5G8VYZdX2UKGgGR0BwqoF1SwW4aAdL5WgIR0Chpy6Xrt3OdX2UKGgGR0ByVTyWiUPhaAdNCgFoCEdAoac7Tz/ZNHV9lChoBkdAbpkFdszl92gHS+loCEdAoac6DoQnQnV9lChoBkdAbZFiiItUXGgHS9doCEdAoadVxffGdnV9lChoBkdAcmBmXw9aEGgHS/poCEdAoadcOXmeUnV9lChoBkdAc7I+qBEroWgHS95oCEdAoaeMVLzwt3V9lChoBkdAcqxhxHXmNmgHTQEBaAhHQKGns7qY7aJ1fZQoaAZHQHHEm4/eLvVoB0veaAhHQKGn91/Ue+51fZQoaAZHQHDFc1KoQ4FoB0vnaAhHQKGoYvStvGZ1fZQoaAZHQHI57AHmig1oB0v+aAhHQKGohW6shgV1fZQoaAZHQE3UtdRiw0RoB0umaAhHQKGpTH6Mzdl1fZQoaAZHQHNOcE3bVSZoB0v8aAhHQKGpW3FUADJ1fZQoaAZHQFX4qfOD8LtoB0vJaAhHQKGpxqoIfKZ1fZQoaAZHQHAJEh7mdRRoB0vsaAhHQKGp3X/5tWN1fZQoaAZHQG43oKtxMnJoB00AAWgIR0ChqjDrJKaodX2UKGgGR0ByZC7mMfihaAdL5mgIR0Chqkbr1M/RdX2UKGgGR0ByEH6SDAaeaAdNGQFoCEdAoapDe9Ba93V9lChoBkdAcWpamXPZ7GgHS85oCEdAoapTzoUzsXV9lChoBkdAcqbOGTLW7WgHS+FoCEdAoapT9ycTanV9lChoBkdAcXQlSjxkNGgHS+ZoCEdAoapqOmzjWHV9lChoBkdAcA0eOn2qUGgHS/toCEdAoapxRZU1h3V9lChoBkdAcqfzQNTcZmgHTQsBaAhHQKGqh5Lytmt1fZQoaAZHQHIxA5WBBiVoB00AAWgIR0ChqxLbxmTUdX2UKGgGR0BxyyP7vXsgaAdL12gIR0Chq0WzF+/hdX2UKGgGR0Bwo0CDEm6YaAdNAAFoCEdAobYFejVQRHV9lChoBkdAc25giu+yq2gHS+xoCEdAobaBhz/6wnV9lChoBkdAczxC9RJmNGgHS8RoCEdAobbMHjZL7HV9lChoBkdAcaU4Kx9oe2gHS+NoCEdAobe4JVsDXHV9lChoBkdAbeHPM0P6K2gHS+5oCEdAobfNCiRGMHV9lChoBkdAbw8HjZL7GmgHTREBaAhHQKG32g2606Z1fZQoaAZHQHCgpIMBp6BoB0voaAhHQKG4Geii7Cl1fZQoaAZHQHBfsQmNR3xoB0vraAhHQKG4S5S3sol1fZQoaAZHQG3Qt65XlsBoB0vqaAhHQKG4SOn2qT91fZQoaAZHQHHoneBQN1BoB0vmaAhHQKG4U3uNPxh1fZQoaAZHQHJPw5/9YOloB0vcaAhHQKG4U8NhE0B1fZQoaAZHQHOePlEJBxBoB00LAWgIR0ChuKFqrR0EdX2UKGgGR0BxFSYQarFPaAdNBAFoCEdAobi5aHKwIXV9lChoBkdAcIwM/yGzr2gHTR4BaAhHQKG44TDfm9x1fZQoaAZHQHFc8kD6nBNoB0vhaAhHQKG5HnL7oB91fZQoaAZHQHOLfsE7nxJoB0vzaAhHQKG5avRJEpl1fZQoaAZHQHJ7kHpr1uloB0vnaAhHQKG5kwnpjc51fZQoaAZHQHDYjzRQaaVoB00XAWgIR0ChuZVI7NjcdX2UKGgGR0Bxg3Y287IUaAdL9GgIR0Chuf4DcM3IdX2UKGgGR0BSVNbHIZIhaAdLsWgIR0ChugU8NhE0dX2UKGgGR0Btoz1RLsa9aAdL4GgIR0ChupV6/qPfdX2UKGgGR0Byjo2Q4jrzaAdL32gIR0ChuuyjxkNGdX2UKGgGR0BwWpTAFgUlaAdL4WgIR0Chux12zOX3dX2UKGgGR0By22Kl54W2aAdNAQFoCEdAobsom7aqTHV9lChoBkdAcqpdFOO802gHS+loCEdAobs85sCT2XV9lChoBkdAbo/Fw1ivxGgHS+poCEdAobtJYHPeHnV9lChoBkdAcZUY4Qz1smgHS9poCEdAobtl0T101nV9lChoBkdAcPd3dKujh2gHS/loCEdAobt3yf+S83V9lChoBkdAcnhu7YkE92gHS9JoCEdAobuLOeJ53XV9lChoBkdAcOIQyAQQMGgHS+toCEdAobutRvWH13V9lChoBkdAb/ps9B8hLWgHS/VoCEdAobw42ycCo3V9lChoBkdAcz7VZcLSeGgHS8hoCEdAobyg5vLowHV9lChoBkdAb2L5O8Cgb2gHS/doCEdAobzKdlNDdHV9lChoBkdAc6zx/NJOFmgHTQQBaAhHQKG8yoegctJ1fZQoaAZHQHIdSOzY289oB00DAWgIR0ChvPTkyULVdX2UKGgGR0BxDwN6PbPAaAdL92gIR0ChveHbqQiidX2UKGgGR0BxDxrIo3JgaAdNJgFoCEdAob33mNipenV9lChoBkdAcJ1uDSPU8WgHS+JoCEdAob4nHLida3V9lChoBkdAcN2bzK9wm2gHS/RoCEdAob43dfsu4HV9lChoBkdAcSvUu+RHPWgHS/NoCEdAob6LbUPQOXV9lChoBkdAcToBhhH9WWgHS/doCEdAob6GFi8WbnV9lChoBkdAcWDfhddE9mgHS/1oCEdAob68f3evZHV9lChoBkdAb7VwkxASnWgHTQUBaAhHQKG/FUH6dlN1fZQoaAZHQG8pO1v2oNxoB00KAWgIR0Chvz4r8R+SdX2UKGgGR0A5tGff4yoGaAdLsGgIR0Chv1YPwuuidX2UKGgGR0BxjOGdqcmTaAdNHQFoCEdAob9aB06o2nV9lChoBkdAcKhIldC3PWgHTQUBaAhHQKG/W6reZXx1fZQoaAZHQHF1ivovBadoB0vtaAhHQKG/kr1/UfB1fZQoaAZHQHAEei8FpwloB0vjaAhHQKG/xEF4cFR1fZQoaAZHQHCN92Pkq+doB0vqaAhHQKHAKC5Etul1fZQoaAZHQHHB8SbpeNVoB0v8aAhHQKHAOOyVv/B1fZQoaAZHQFS3WzWwu/VoB0uoaAhHQKHAt0VafSR1fZQoaAZHQHGxtnTRYzVoB0vdaAhHQKHA1ivPkaN1fZQoaAZHQHMnHmzSkTJoB0vhaAhHQKHA83ocJdB1fZQoaAZHQHLBIcinpB5oB0vZaAhHQKHBAdf9gnd1fZQoaAZHQHFxlH4GlhxoB0vSaAhHQKHBOH8jzI51fZQoaAZHQHHCuk56t1ZoB0vXaAhHQKHCEfqX4TN1fZQoaAZHQHGq6r/82rJoB0vlaAhHQKHCMXv6TGJ1fZQoaAZHQG+mNVinYQJoB00pAWgIR0Chwi9cbBGhdX2UKGgGR0ByZQ83dbgTaAdL9WgIR0ChwkUaQ3gldX2UKGgGR0Bx4/SgGr0baAdNDwFoCEdAocJROYYzi3V9lChoBkdAbqIn6VMVUWgHS+doCEdAocJVopQUH3V9lChoBkdAccPm6GxlhGgHS/poCEdAocKYR7JGOXV9lChoBkdAcLBCHh0heWgHS9doCEdAocKhigCfYnV9lChoBkdAcvWA6Mir1mgHS/hoCEdAocLOoxYaHnV9lChoBkdAb+jl/6O5rmgHS+JoCEdAocMz/ACW/3V9lChoBkdAcjqxlxwQ2GgHS/xoCEdAocN2zF+/g3V9lChoBkdAO2wdfb9IgGgHS7ZoCEdAocOidWhh6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 498, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-2M.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd19e0596b9b88409ec6283a8eb89626424baf8878c0e3d8d0a89017401a576a
|
3 |
+
size 146659
|
ppo-LunarLander-v2-2M/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-2M/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efe6133bb50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efe6133bbe0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efe6133bc70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efe6133bd00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efe6133bd90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efe6133be20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efe6133beb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efe6133bf40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efe61344040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efe613440d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efe61344160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efe613441f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efe6133d540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686789372639714411,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGayojsUqoG6zPUvMzdvtC9sFvG6S2zJswAAgD8AAIA/Ztm4vBSYq7poRwy2s1UCsgrDq7qEIR01AACAPwAAgD9Ntjk9ww2wPlPRa7278a2+58aavN18D7sAAAAAAAAAAJo7kT3Qlfs+NHOVvbOdtL4adiY93jDUvQAAAAAAAAAAMzmDvc+xjz9AKKa9ykcTv0v+Gb61W3U9AAAAAAAAAAAmM4U9yHbPvAcIOr3hgCu9zn+Cve6sI74AAIA/AACAP9poJD6TD1Y/9ukavGCj8754wRc+bIqYvQAAAAAAAAAATflyvZHIzj4mJps+wS+ZvqFfYj5N0fc9AAAAAAAAAADmqBY9RAGbPiWPkTxWUZm+adaPPRXV+7wAAAAAAAAAAE3Adz0mVIY+8agxviTInb7R3rG91T9ivQAAAAAAAAAATfFqPZFHnj/OFnk+Pe8Mv69/pT11go09AAAAAAAAAADNnig91wMquRZYXTmt9ec09YfvO4v7hLgAAIA/AACAP6B+kT6bqTE/Gy3FvkG2676wlZg9y0R9vgAAAAAAAAAAAKNTvdeh9T7zdmu98AGnvoM0x72DSJI8AAAAAAAAAACA/zm9e1eQPuaS5z3j6qa+IylePIS3oz0AAAAAAAAAAJofoLy8Xqw/KbSZvpoFC795/967pmn3vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCLZxaPjn6MAWyUTQkBjAF0lEdAoaSqz5XU6XV9lChoBkdAcm2Aeq7yx2gHTQMBaAhHQKGk5shxHXp1fZQoaAZHQHCq7BbfP5ZoB0vyaAhHQKGl/Em6XjV1fZQoaAZHQHFeclLOAy5oB0vFaAhHQKGmc33Hq/x1fZQoaAZHQHI0WucMEzRoB0vfaAhHQKGmv7655JN1fZQoaAZHQHF7gDV6NVBoB00XAWgIR0ChpsQ/PgNxdX2UKGgGR0ByhwALiMo+aAdL+2gIR0Chpv6TwDvFdX2UKGgGR0Bxsa+bmU4aaAdL8mgIR0Chpx5G8VYZdX2UKGgGR0BwqoF1SwW4aAdL5WgIR0Chpy6Xrt3OdX2UKGgGR0ByVTyWiUPhaAdNCgFoCEdAoac7Tz/ZNHV9lChoBkdAbpkFdszl92gHS+loCEdAoac6DoQnQnV9lChoBkdAbZFiiItUXGgHS9doCEdAoadVxffGdnV9lChoBkdAcmBmXw9aEGgHS/poCEdAoadcOXmeUnV9lChoBkdAc7I+qBEroWgHS95oCEdAoaeMVLzwt3V9lChoBkdAcqxhxHXmNmgHTQEBaAhHQKGns7qY7aJ1fZQoaAZHQHHEm4/eLvVoB0veaAhHQKGn91/Ue+51fZQoaAZHQHDFc1KoQ4FoB0vnaAhHQKGoYvStvGZ1fZQoaAZHQHI57AHmig1oB0v+aAhHQKGohW6shgV1fZQoaAZHQE3UtdRiw0RoB0umaAhHQKGpTH6Mzdl1fZQoaAZHQHNOcE3bVSZoB0v8aAhHQKGpW3FUADJ1fZQoaAZHQFX4qfOD8LtoB0vJaAhHQKGpxqoIfKZ1fZQoaAZHQHAJEh7mdRRoB0vsaAhHQKGp3X/5tWN1fZQoaAZHQG43oKtxMnJoB00AAWgIR0ChqjDrJKaodX2UKGgGR0ByZC7mMfihaAdL5mgIR0Chqkbr1M/RdX2UKGgGR0ByEH6SDAaeaAdNGQFoCEdAoapDe9Ba93V9lChoBkdAcWpamXPZ7GgHS85oCEdAoapTzoUzsXV9lChoBkdAcqbOGTLW7WgHS+FoCEdAoapT9ycTanV9lChoBkdAcXQlSjxkNGgHS+ZoCEdAoapqOmzjWHV9lChoBkdAcA0eOn2qUGgHS/toCEdAoapxRZU1h3V9lChoBkdAcqfzQNTcZmgHTQsBaAhHQKGqh5Lytmt1fZQoaAZHQHIxA5WBBiVoB00AAWgIR0ChqxLbxmTUdX2UKGgGR0BxyyP7vXsgaAdL12gIR0Chq0WzF+/hdX2UKGgGR0Bwo0CDEm6YaAdNAAFoCEdAobYFejVQRHV9lChoBkdAc25giu+yq2gHS+xoCEdAobaBhz/6wnV9lChoBkdAczxC9RJmNGgHS8RoCEdAobbMHjZL7HV9lChoBkdAcaU4Kx9oe2gHS+NoCEdAobe4JVsDXHV9lChoBkdAbeHPM0P6K2gHS+5oCEdAobfNCiRGMHV9lChoBkdAbw8HjZL7GmgHTREBaAhHQKG32g2606Z1fZQoaAZHQHCgpIMBp6BoB0voaAhHQKG4Geii7Cl1fZQoaAZHQHBfsQmNR3xoB0vraAhHQKG4S5S3sol1fZQoaAZHQG3Qt65XlsBoB0vqaAhHQKG4SOn2qT91fZQoaAZHQHHoneBQN1BoB0vmaAhHQKG4U3uNPxh1fZQoaAZHQHJPw5/9YOloB0vcaAhHQKG4U8NhE0B1fZQoaAZHQHOePlEJBxBoB00LAWgIR0ChuKFqrR0EdX2UKGgGR0BxFSYQarFPaAdNBAFoCEdAobi5aHKwIXV9lChoBkdAcIwM/yGzr2gHTR4BaAhHQKG44TDfm9x1fZQoaAZHQHFc8kD6nBNoB0vhaAhHQKG5HnL7oB91fZQoaAZHQHOLfsE7nxJoB0vzaAhHQKG5avRJEpl1fZQoaAZHQHJ7kHpr1uloB0vnaAhHQKG5kwnpjc51fZQoaAZHQHDYjzRQaaVoB00XAWgIR0ChuZVI7NjcdX2UKGgGR0Bxg3Y287IUaAdL9GgIR0Chuf4DcM3IdX2UKGgGR0BSVNbHIZIhaAdLsWgIR0ChugU8NhE0dX2UKGgGR0Btoz1RLsa9aAdL4GgIR0ChupV6/qPfdX2UKGgGR0Byjo2Q4jrzaAdL32gIR0ChuuyjxkNGdX2UKGgGR0BwWpTAFgUlaAdL4WgIR0Chux12zOX3dX2UKGgGR0By22Kl54W2aAdNAQFoCEdAobsom7aqTHV9lChoBkdAcqpdFOO802gHS+loCEdAobs85sCT2XV9lChoBkdAbo/Fw1ivxGgHS+poCEdAobtJYHPeHnV9lChoBkdAcZUY4Qz1smgHS9poCEdAobtl0T101nV9lChoBkdAcPd3dKujh2gHS/loCEdAobt3yf+S83V9lChoBkdAcnhu7YkE92gHS9JoCEdAobuLOeJ53XV9lChoBkdAcOIQyAQQMGgHS+toCEdAobutRvWH13V9lChoBkdAb/ps9B8hLWgHS/VoCEdAobw42ycCo3V9lChoBkdAcz7VZcLSeGgHS8hoCEdAobyg5vLowHV9lChoBkdAb2L5O8Cgb2gHS/doCEdAobzKdlNDdHV9lChoBkdAc6zx/NJOFmgHTQQBaAhHQKG8yoegctJ1fZQoaAZHQHIdSOzY289oB00DAWgIR0ChvPTkyULVdX2UKGgGR0BxDwN6PbPAaAdL92gIR0ChveHbqQiidX2UKGgGR0BxDxrIo3JgaAdNJgFoCEdAob33mNipenV9lChoBkdAcJ1uDSPU8WgHS+JoCEdAob4nHLida3V9lChoBkdAcN2bzK9wm2gHS/RoCEdAob43dfsu4HV9lChoBkdAcSvUu+RHPWgHS/NoCEdAob6LbUPQOXV9lChoBkdAcToBhhH9WWgHS/doCEdAob6GFi8WbnV9lChoBkdAcWDfhddE9mgHS/1oCEdAob68f3evZHV9lChoBkdAb7VwkxASnWgHTQUBaAhHQKG/FUH6dlN1fZQoaAZHQG8pO1v2oNxoB00KAWgIR0Chvz4r8R+SdX2UKGgGR0A5tGff4yoGaAdLsGgIR0Chv1YPwuuidX2UKGgGR0BxjOGdqcmTaAdNHQFoCEdAob9aB06o2nV9lChoBkdAcKhIldC3PWgHTQUBaAhHQKG/W6reZXx1fZQoaAZHQHF1ivovBadoB0vtaAhHQKG/kr1/UfB1fZQoaAZHQHAEei8FpwloB0vjaAhHQKG/xEF4cFR1fZQoaAZHQHCN92Pkq+doB0vqaAhHQKHAKC5Etul1fZQoaAZHQHHB8SbpeNVoB0v8aAhHQKHAOOyVv/B1fZQoaAZHQFS3WzWwu/VoB0uoaAhHQKHAt0VafSR1fZQoaAZHQHGxtnTRYzVoB0vdaAhHQKHA1ivPkaN1fZQoaAZHQHMnHmzSkTJoB0vhaAhHQKHA83ocJdB1fZQoaAZHQHLBIcinpB5oB0vZaAhHQKHBAdf9gnd1fZQoaAZHQHFxlH4GlhxoB0vSaAhHQKHBOH8jzI51fZQoaAZHQHHCuk56t1ZoB0vXaAhHQKHCEfqX4TN1fZQoaAZHQHGq6r/82rJoB0vlaAhHQKHCMXv6TGJ1fZQoaAZHQG+mNVinYQJoB00pAWgIR0Chwi9cbBGhdX2UKGgGR0ByZQ83dbgTaAdL9WgIR0ChwkUaQ3gldX2UKGgGR0Bx4/SgGr0baAdNDwFoCEdAocJROYYzi3V9lChoBkdAbqIn6VMVUWgHS+doCEdAocJVopQUH3V9lChoBkdAccPm6GxlhGgHS/poCEdAocKYR7JGOXV9lChoBkdAcLBCHh0heWgHS9doCEdAocKhigCfYnV9lChoBkdAcvWA6Mir1mgHS/hoCEdAocLOoxYaHnV9lChoBkdAb+jl/6O5rmgHS+JoCEdAocMz/ACW/3V9lChoBkdAcjqxlxwQ2GgHS/xoCEdAocN2zF+/g3V9lChoBkdAO2wdfb9IgGgHS7ZoCEdAocOidWhh6XVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 498,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-2M/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01fb62a2986150750403211bf955a7e6a5c88a341b2b951ec35d0b51d7177b54
|
3 |
+
size 87929
|
ppo-LunarLander-v2-2M/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:272f0c11c9e8ec6d1032fe32e872f0dd68e7252b5145d77affa958fb36c32a70
|
3 |
+
size 43329
|
ppo-LunarLander-v2-2M/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-2M/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 285.641434574119, "std_reward": 20.384998002155115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-15T01:14:42.311656"}
|