nadirbekovnadir's picture
One more try!
1083abf
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0ecdd65f0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0ecdd6680>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0ecdd6710>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0ecdd67a0>",
"_build": "<function ActorCriticPolicy._build at 0x7fb0ecdd6830>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb0ecdd68c0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0ecdd6950>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb0ecdd69e0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0ecdd6a70>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0ecdd6b00>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0ecdd6b90>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb0ecdd1f40>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 64,
"num_timesteps": 3014656,
"_total_timesteps": 3000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652521269.6639104,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxkL2hvbWUvbmFkaXJiZWtvdi9hbmFjb25kYTMvZW52cy9oZi1ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAMBcHr772fI7Q+YyPjEauLybwbS9RaTfPgAAgD8AAAAAM61rPBBMqj+S+fY9t67jvkUzFTxzOBY8AAAAAAAAAADAEXo+VIlePhrarL6Fb+6+5YtMPfYmeL0AAAAAAAAAAH1ylr6jb7M+DjVQPmMqxb7O2Gu+4L5TPgAAAAAAAAAApvvavWxY1jwWjd8+xFmivrZ9T73NrpU+AAAAAAAAAACziGw9j95Guo24aTMkFzAwoZSPOmoCvbMAAIA/AACAP/qDID6h/FU/8kKoPnYeOb+HvJA+rvr9PQAAAAAAAAAAzfPKPMO5b7qPQ0QycG/rsN/2pDqOCZSyAACAPwAAgD+a1fS7ISqeP9ZCZb30wjq/Fh8ROtobNjwAAAAAAAAAAPqdkz4EnYc+fvfQvmQ8275zO/M8jvI5vgAAAAAAAAAAZubTvHtGw7p9Qd+7ERDvuBkK17l6AVQ4AACAPwAAgD8gn04+/gvRPQKjqr5JFIe+yzj8OyCh5b0AAAAAAAAAADOTRz1cOAG8Ukwavg5ZJj0jt1Q9z7IHvgAAgD8AAIA/Gm0FPlyOKD1V7yO+GakCvpGmtbzuuNa7AAAAAAAAAAAzUNs8KaxSusDiiTxCkgsz4pwUOwO7dDMAAIA/AACAPzNvKz3bVv89vz8AvpqE2r5++N47REW2vQAAAAAAAAAAZmWkvIWxzTwOytY966hivvVARz3k4yY9AAAAAAAAAACzPhk9dp4jPZT3iL2qXpS+G9i1PJozNr0AAAAAAAAAAIB6Nj5pP3y8DxySOmGS0LgN2+29GkC8uQAAgD8AAIA/Grg8voivtz4gKD89Psk0v66wir5O2tU9AAAAAAAAAABGokG+iH6nvPK6MbusWpW5eRsWPjrUZzoAAIA/AACAPzM6zj2kNwA8qh0Svkk2i76TrT89SMPQvAAAAAAAAAAAmgP+PCnIQroGfx++TkTqNw8J37qu5FK3AACAPwAAgD9Nmmu9haO5uRq3p7y+m4Qx/9KKuw3Ed7MAAIA/AACAP/PUSL44FdM+8KmzvJSfK7+KoWG+OCDyPQAAAAAAAAAAGlFKvsFrzLzMyQU7GA+DOfVwMD6KxS+6AACAPwAAgD+zWKa9y5p3P+9xLL4B8U2/1ArVvR3HWr0AAAAAAAAAAFquIz4ceE0+bFYIPCQY0L7M3jg+BvEEPQAAAAAAAAAAzQuLvL6YvT0N5ag91TmjvioSBz37sC89AAAAAAAAAADg0DM+iN6VvCJ6GrsR+3E5Ao8EvurCTjoAAIA/AACAP5pBnzsU2Lm6frojMiuderClqxK6UaZLsgAAgD8AAIA/Mzsbu7SQyD4ylEs9JzIiv9Bi0bwsKkU9AAAAAAAAAADN5bU8ewKPuk3uOrNkMPAuSHAWuOGxxzMAAIA/AACAP3O47b0y978/im/ivpJ8OL5Cjga+HOrDvQAAAAAAAAAA5jY1vc8RE7w2KnY+CSu8vbyeEL23QB0/AACAPwAAgD8TVy2+FJSCPwEoBL9MxTq/JyKJvu9Whr4AAAAAAAAAALqyPr6b/I+8cB28u+n/I7oPXQQ+yFkCOwAAgD8AAIA/c5mHvZJYmz+eqey+vr1Vv8UXhb3sM4m+AAAAAAAAAABzRMO9qL6uPb5hqT2ZOKm+h1SuvPYISjwAAAAAAAAAAGa6MTyMvS8/AuUOPbcPZb8Jmz48CBIXOwAAAAAAAAAAJqpVvrYmfbwY5FS3amN1tV881j1lyYE2AACAPwAAgD8Aazy+iC6yvFBtJDys2YK8GDAiPhu+Er0AAAAAAAAAAGBmRD6EABY/Xl6HPL9bML8NCGU+uD8LvQAAAAAAAAAAzXQbvT16HLl0dyG95AurMYQMq7t+LY8zAACAPwAAgD9mCci8TypKvDIBsTwrFeU8XzF/veYvVb0AAIA/AACAPwAXuL32Bxk7Szl0PA4ugjzq4c66ddQPPAAAAAAAAAAAc7UDvvb3QzuFJnY+ez6CvWb40L2BhJg+AACAPwAAAACapjW9ru3+uoj/2L0prf07YvotPDoL5rwAAIA/AACAPwCenjwww6I/piOJPVS1FL8VFnw9bRwxPQAAAAAAAAAAum0ivpwlBLwdEU48fpmaPFhHWz20B4G9AACAPwAAgD8zYYC8V9tnPDMmu71FT4W+oxu4vIrACrsAAAAAAAAAALNIPb0UlKa67nYCPi3UKrM7/KE68080swAAgD8AAIA/uh+yvom5Yj8+EYi+gacOv0aV474+aOy8AAAAAAAAAADNrCY8wzUvOXIo1DnQl3Y13rYLPO3pALkAAIA/AACAP2Yv2r08grk+nJStvcf3HL/JlLO9WPz4vAAAAAAAAAAAAGaKvLfMLz9sTMc858dtv6hkA7x3bwA+AAAAAAAAAAAqyx+/MK80vvIxu772Jgk9BeZuvksq074AAIA/AACAP949m77YlLw+Xt/qPq+J9b5Aqxa+4keOPgAAAAAAAAAAAC6nvfKvnT8YVPi+Dbwyvx2quL2rFkO+AAAAAAAAAACa/em8UjjntzCePzytfjy4cNesO7M3ObcAAIA/AACAPwBupzwAF58/u7xzPZ6rMr/+ukE9BwcavAAAAAAAAAAAM08bvX5DgT8tzha+JXZ3vxxTk73ah8K8AAAAAAAAAADaJIo9hROPP/oBnT4RNT+/NF72PXsCHz4AAAAAAAAAAE3VVz0pQDq8jeb0u21WBD1IbZE9kFCEvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.004885333333333408,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXU4JiMn1b0CUhpRSlIwBbJRLpIwBdJRHQLRONVXmvGJ1fZQoaAZoCWgPQwgKFLGIIeNwQJSGlFKUaBVLqWgWR0C0Tj4lD4QCdX2UKGgGaAloD0MIq7AZ4AJAckCUhpRSlGgVS65oFkdAtE49Sk0rLHV9lChoBmgJaA9DCKDhzRr8TnJAlIaUUpRoFUuGaBZHQLROVYE4ecR1fZQoaAZoCWgPQwhSmPc4U3ZxQJSGlFKUaBVLzmgWR0C0TlQwfyPNdX2UKGgGaAloD0MI3gIJih8NRECUhpRSlGgVS29oFkdAtE5Zs41gpnV9lChoBmgJaA9DCKZ7ndQXRHNAlIaUUpRoFUvYaBZHQLROYGlANXp1fZQoaAZoCWgPQwhWgsXhzNlxQJSGlFKUaBVLo2gWR0C0Tm5qREF4dX2UKGgGaAloD0MIS1tc4zO/cECUhpRSlGgVS5poFkdAtE563solU3V9lChoBmgJaA9DCFtB0xJrY3FAlIaUUpRoFUuwaBZHQLROkZUDMeR1fZQoaAZoCWgPQwghdTv7ii5zQJSGlFKUaBVL8mgWR0C0Tp1ajesQdX2UKGgGaAloD0MIqbwd4TTTckCUhpRSlGgVS7NoFkdAtE6cgdOqN3V9lChoBmgJaA9DCGMOgo6WQnJAlIaUUpRoFUuRaBZHQLROoX/HYHx1fZQoaAZoCWgPQwi++njou9lyQJSGlFKUaBVL1GgWR0C0Tq1A3T/idX2UKGgGaAloD0MIiULLun/ycECUhpRSlGgVS8RoFkdAtE6wMLF4s3V9lChoBmgJaA9DCDeKrDXUMXFAlIaUUpRoFUuiaBZHQLRO4dY4hll1fZQoaAZoCWgPQwgjwOld/CVyQJSGlFKUaBVL2mgWR0C0TujreIl/dX2UKGgGaAloD0MI7PoFuyHzcECUhpRSlGgVS7poFkdAtE7+BMBZIXV9lChoBmgJaA9DCLHfE+tUI3JAlIaUUpRoFUvWaBZHQLRPA77sOXp1fZQoaAZoCWgPQwiqnPaUnGhyQJSGlFKUaBVLtGgWR0C0TwdrO7g9dX2UKGgGaAloD0MI3GRUGQYhdECUhpRSlGgVS8hoFkdAtE8MUTL4e3V9lChoBmgJaA9DCE8IHXSJbHJAlIaUUpRoFUvUaBZHQLRPEzollbx1fZQoaAZoCWgPQwirWtJRzsBxQJSGlFKUaBVLw2gWR0C0TxsHnlnzdX2UKGgGaAloD0MIy6Da4AR0c0CUhpRSlGgVS7toFkdAtE8qhvitJXV9lChoBmgJaA9DCCYceotHlXNAlIaUUpRoFUvPaBZHQLRPLkmhM8J1fZQoaAZoCWgPQwhbXU4JSIpyQJSGlFKUaBVLvGgWR0C0T0ERaouPdX2UKGgGaAloD0MI7UYf88GOcUCUhpRSlGgVS6NoFkdAtE9cUsWfsnV9lChoBmgJaA9DCIidKXTewHNAlIaUUpRoFUu/aBZHQLRPYtmL9/B1fZQoaAZoCWgPQwhBnl2+NcVzQJSGlFKUaBVL9mgWR0C0T3SSq2jPdX2UKGgGaAloD0MI5DJuaiARckCUhpRSlGgVS6loFkdAtE90Vh1DB3V9lChoBmgJaA9DCN45lKFqz3FAlIaUUpRoFUvQaBZHQLRPf3vQWvd1fZQoaAZoCWgPQwiXNhyWxmRxQJSGlFKUaBVLz2gWR0C0T60sWfsedX2UKGgGaAloD0MIZcix9cyWckCUhpRSlGgVS9loFkdAtE+spTdcjnV9lChoBmgJaA9DCNi5aTNOP0VAlIaUUpRoFUtdaBZHQLRPsDYywfR1fZQoaAZoCWgPQwhAvRk1X4pwQJSGlFKUaBVLlmgWR0C0T9BbKRuCdX2UKGgGaAloD0MIw5s1eF8XcUCUhpRSlGgVS7NoFkdAtE/XSOR1YHV9lChoBmgJaA9DCMOAJVdxp3BAlIaUUpRoFUuWaBZHQLRP/7J4jbB1fZQoaAZoCWgPQwiiQQqeQqdxQJSGlFKUaBVLvGgWR0C0UCo6bONYdX2UKGgGaAloD0MIDqFKzR7obkCUhpRSlGgVS5doFkdAtFAuSdOIqXV9lChoBmgJaA9DCOW1ErrL0nNAlIaUUpRoFUu9aBZHQLRQMTwDvE11fZQoaAZoCWgPQwgJFRxeEAZyQJSGlFKUaBVLz2gWR0C0UDFUQ04zdX2UKGgGaAloD0MI75BigMRCckCUhpRSlGgVS6xoFkdAtFA1KvmoznV9lChoBmgJaA9DCFPNrKUA9nBAlIaUUpRoFUupaBZHQLRQPgTh5xB1fZQoaAZoCWgPQwjOqs/VVnRxQJSGlFKUaBVLxGgWR0C0UEjfzjFRdX2UKGgGaAloD0MIBrr2BbTxckCUhpRSlGgVS9ZoFkdAtFBRujynUHV9lChoBmgJaA9DCChFK/cC9nFAlIaUUpRoFUuUaBZHQLRQgPV/c351fZQoaAZoCWgPQwj4GKw41XokQJSGlFKUaBVLXWgWR0C0UISqyWzGdX2UKGgGaAloD0MInkKu1DNfcUCUhpRSlGgVS7BoFkdAtFCEjv/ipHV9lChoBmgJaA9DCBtkkpHzFnRAlIaUUpRoFUu6aBZHQLRQlyaNMoN1fZQoaAZoCWgPQwiFeCRenr9yQJSGlFKUaBVL2mgWR0C0UJss+V1PdX2UKGgGaAloD0MI38X7cTs+cUCUhpRSlGgVS7doFkdAtFDR6/qPfnV9lChoBmgJaA9DCMKk+PhEQHFAlIaUUpRoFU1bAWgWR0C0UPqfSQYDdX2UKGgGaAloD0MIgzEiUei9b0CUhpRSlGgVS5hoFkdAtFD+zQeFL3V9lChoBmgJaA9DCISCUrQyPnBAlIaUUpRoFUumaBZHQLRQ/lum78N1fZQoaAZoCWgPQwgJU5RLI0hxQJSGlFKUaBVLvGgWR0C0UQJcX3xndX2UKGgGaAloD0MIob/QI4Z7ckCUhpRSlGgVS8FoFkdAtFETCl7+k3V9lChoBmgJaA9DCDHO34SCznBAlIaUUpRoFUuxaBZHQLRREadc0Lt1fZQoaAZoCWgPQwhywRn8/ZFwQJSGlFKUaBVLvmgWR0C0USXPZ7HAdX2UKGgGaAloD0MIP6iLFIpUcUCUhpRSlGgVS7loFkdAtFEkpCrtFHV9lChoBmgJaA9DCPJBz2ZVIXBAlIaUUpRoFUuPaBZHQLRRLRywOe91fZQoaAZoCWgPQwjlYDYBhvByQJSGlFKUaBVLu2gWR0C0UTFf/m1ZdX2UKGgGaAloD0MIwMx38NNHcUCUhpRSlGgVS7RoFkdAtFFN/Ue+23V9lChoBmgJaA9DCMqmXOGdHHBAlIaUUpRoFUudaBZHQLRRYonrpq11fZQoaAZoCWgPQwhXdyy2iXNwQJSGlFKUaBVLpmgWR0C0UWch1TzedX2UKGgGaAloD0MIOIdrtYfUcUCUhpRSlGgVS7doFkdAtFFmqsEJSnV9lChoBmgJaA9DCMlWl1MCZkFAlIaUUpRoFUtnaBZHQLRRZon8baR1fZQoaAZoCWgPQwj04VmCzFtyQJSGlFKUaBVLpGgWR0C0UWZssQNDdX2UKGgGaAloD0MIa0QwDi5/ckCUhpRSlGgVS+VoFkdAtFFrbxmTT3V9lChoBmgJaA9DCDrq6LjaGXJAlIaUUpRoFUvWaBZHQLRRcwsGxD91fZQoaAZoCWgPQwjHKTqSy1FzQJSGlFKUaBVL7WgWR0C0UXbUb1h9dX2UKGgGaAloD0MIdaxSema+cUCUhpRSlGgVS85oFkdAtFF63NLUTnV9lChoBmgJaA9DCAIoRpbMM3FAlIaUUpRoFUvBaBZHQLRRjmBvrGB1fZQoaAZoCWgPQwhpjxfS4RFxQJSGlFKUaBVLk2gWR0C0UZU/GEPEdX2UKGgGaAloD0MIRBX+DC8jcECUhpRSlGgVS6poFkdAtFGdBD5TInV9lChoBmgJaA9DCLLWUGov63NAlIaUUpRoFUuzaBZHQLRRsdl/Yrd1fZQoaAZoCWgPQwhkBFQ4Ar5xQJSGlFKUaBVL3WgWR0C0Ucg1JlJ6dX2UKGgGaAloD0MIAgzLn+8qdECUhpRSlGgVS/VoFkdAtFHUD3dsSHV9lChoBmgJaA9DCBISaRv/E3FAlIaUUpRoFUuyaBZHQLRR19c8klh1fZQoaAZoCWgPQwiGkPP+/xpzQJSGlFKUaBVL2GgWR0C0UeZimVJMdX2UKGgGaAloD0MI5jxjX3KWc0CUhpRSlGgVS9ZoFkdAtFHrustCiXV9lChoBmgJaA9DCL1zKEOVAXBAlIaUUpRoFUuZaBZHQLRR+gZCOWB1fZQoaAZoCWgPQwiXUwJiEghyQJSGlFKUaBVLpmgWR0C0Uf3aN+9bdX2UKGgGaAloD0MIq+ek9035cECUhpRSlGgVS8RoFkdAtFIhaOgg5nV9lChoBmgJaA9DCM+hDFXxxHJAlIaUUpRoFUu3aBZHQLRSNdcSoOx1fZQoaAZoCWgPQwhS81XyMR1yQJSGlFKUaBVL1GgWR0C0Ukc0xdpqdX2UKGgGaAloD0MIK98zEqFKcECUhpRSlGgVS7BoFkdAtFJWDqW1MXV9lChoBmgJaA9DCDp6/N7minFAlIaUUpRoFUugaBZHQLRSnevIOpd1fZQoaAZoCWgPQwjKN9vcWDZyQJSGlFKUaBVL02gWR0C0Up1l05lwdX2UKGgGaAloD0MIVwkWh/NkckCUhpRSlGgVS6FoFkdAtFKpImPYF3V9lChoBmgJaA9DCFDkSdJ153FAlIaUUpRoFUu7aBZHQLRSrl+mWMV1fZQoaAZoCWgPQwi29j5VRcVyQJSGlFKUaBVL1WgWR0C0UrcZk079dX2UKGgGaAloD0MIZMxdS4iIdECUhpRSlGgVS+poFkdAtFLXDjzZpXV9lChoBmgJaA9DCD/G3LWEJl1AlIaUUpRoFU3oA2gWR0C0UtwdbPhRdX2UKGgGaAloD0MIfQOTGwVBcUCUhpRSlGgVS69oFkdAtFLgytV7yHV9lChoBmgJaA9DCPeuQV/6bXBAlIaUUpRoFUuxaBZHQLRS7EPlMh51fZQoaAZoCWgPQwgWvr7W5RRzQJSGlFKUaBVL1GgWR0C0UvTUmUnpdX2UKGgGaAloD0MIR4/f2/SxcECUhpRSlGgVS8VoFkdAtFMLzbvgFXV9lChoBmgJaA9DCGCSyhSzl3FAlIaUUpRoFUu3aBZHQLRTFXJo0yh1fZQoaAZoCWgPQwjvycNCrZlwQJSGlFKUaBVLpmgWR0C0UxjjJdSmdX2UKGgGaAloD0MIih2NQ300b0CUhpRSlGgVS6FoFkdAtFMeASWZ7XVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 368,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.995,
"ent_coef": 0.005,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 32,
"n_epochs": 8,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMEAIAA7JSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9uYWRpcmJla292L2FuYWNvbmRhMy9lbnZzL2hmLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}