File size: 7,499 Bytes
00e77b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
widget:
- text: >-
Gapapa kalian gak tahu band Indo ini. Tapi jangan becanda. Karena mereka
berani menyanyikan dengan lantang bagaimana aktivis ditikam, diracun,
dikursilitrikkan, dan dibunuh di udara. Orang-orang yang berkorban nyawa
supaya kalian menikmati hari ini sambil ngetwit tanpa khawatir
example_title: Example 1
output:
- label: Negative
score: 0.2964
- label: Neutral
score: 0.067
- label: Positive
score: 0.6969
- text: >-
Selama ada kelompok yg ingin jd mesias, selama itu jg govt punya justifikasi
but bikin banyak aturan = celah korup/power abuse. Keadilan adalah
deregulasi.
example_title: Example 2
output:
- label: Negative
score: 0.971
- label: Neutral
score: 0.0165
- label: Positive
score: 0.126
- text: >-
saat pendukungmu oke😹 gas ✌🏽oke😹 gas ✌🏽tapi kamu malah ketawa 🤣 itu ga
respek 😠banget wok jangan lupa makan siang 😁geratisnya wok😋😹✌🏽
example_title: Example 3
output:
- label: Negative
score: 0.6457
- label: Neutral
score: 0.048
- label: Positive
score: 0.3063
- text: >-
Infoin loker wfh/freelance untuk mahasiswa dong, pengin bangget buat
tambahan uang jajan di kos
example_title: Example 4
output:
- label: Negative
score: 0.0544
- label: Neutral
score: 0.6973
- label: Positive
score: 0.2482
- text: >-
Cari kerja sekarang tuh susah. Anaknya Presiden aja mesti dicariin kerjaan
sama bapaknya
example_title: Example 5
output:
- label: Negative
score: 0.9852
- label: Neutral
score: 0.0116
- label: Positive
score: 0.0032
- text: >-
Komisi Penyiaran Indonesia (KPI) meminta agar tayangan televisi menampilkan
citra positif Polri secara edukatif dan akurat. Hal ini disampaikan ketua
KPI Pusat Ubaidillah dalam sebuah diskusi panel
example_title: Example 6
output:
- label: Neutral
score: 0.9932
- label: Positive
score: 0.0063
- label: Negative
score: 0.0005
- text: >-
Jgnkan tweet becandaan.. kadang tweet normal yg gue baca 'oh menarik' trs
gue like/retweet, trs gue tinggal tidur, BESOKNYA ITU TWEET DIRUJAK. Gue jadi
mikir, ini emang gue yang merasa semua hal menarik dan semua org bisa aja
bener.. ATAU.. SEMUA ORANG jadi sensitif
example_title: Example 7
output:
- label: Negative
score: 0.5531
- label: Neutral
score: 0.4426
- label: Positive
score: 0.0043
library_name: transformers
license: mit
language:
- id
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
This model is a fine-tuned version of [IndoBertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) for Indonesian sentiment analysis. The model is designed to classify sentiment into three categories: negative, positive, and neutral. It was trained on a diverse dataset comprising reactions from Twitter and other social media platforms, covering various topics, including politics, disasters, and education. The model is optimized using Optuna for hyperparameter tuning and evaluated using accuracy, F1-score, precision, and recall metrics.
## Bias and Limitations
Do consider that this model is trained using certain data, which may cause bias in the sentiment classification process. The model may inherit socio-cultural biases from its training data and may be less accurate for the most recent events that are not covered in the data. The limitation of the three categories may also not fully grasp the complexity of emotions, especially in capturing particular contexts. Therefore, it is important to consider and account for such biases when using this model.
## Evaluation Results
The training process uses hyperparameter optimization techniques with Optuna. The model was trained for a maximum of 10 epochs with a batch size of 16, using an optimized learning rate and weight decay. The evaluation strategy is performed every 100 steps, saving the best model based on accuracy. The training also applied early stopping with patience 3 to prevent overfitting.
<table style="text-align: center; width: 100%;">
<tr>
<th>Epoch</th>
<th>Training Loss</th>
<th>Validation Loss</th>
<th>Accuracy</th>
<th>F1</th>
<th>Precision</th>
<th>Recall</th>
</tr>
<tr>
<td>100</td>
<td>1.052800</td>
<td>0.995017</td>
<td>0.482368</td>
<td>0.348356</td>
<td>0.580544</td>
<td>0.482368</td>
</tr>
<tr>
<td>200</td>
<td>0.893700</td>
<td>0.807756</td>
<td>0.730479</td>
<td>0.703134</td>
<td>0.756189</td>
<td>0.730479</td>
</tr>
<tr>
<td>300</td>
<td>0.583400</td>
<td>0.476157</td>
<td>0.850126</td>
<td>0.847161</td>
<td>0.849467</td>
<td>0.850126</td>
</tr>
<tr>
<td>400</td>
<td>0.413600</td>
<td>0.385942</td>
<td>0.867758</td>
<td>0.867614</td>
<td>0.870417</td>
<td>0.867758</td>
</tr>
<tr>
<td>500</td>
<td>0.345700</td>
<td>0.362191</td>
<td>0.885390</td>
<td>0.883918</td>
<td>0.886880</td>
<td>0.885390</td>
</tr>
<tr>
<td>600</td>
<td>0.245400</td>
<td>0.330090</td>
<td>0.897985</td>
<td>0.897466</td>
<td>0.897541</td>
<td>0.897985</td>
</tr>
<tr>
<td>700</td>
<td>0.485000</td>
<td>0.308807</td>
<td>0.899244</td>
<td>0.898736</td>
<td>0.898761</td>
<td>0.899244</td>
</tr>
<tr>
<td>800</td>
<td>0.363700</td>
<td>0.328786</td>
<td>0.896725</td>
<td>0.895167</td>
<td>0.898695</td>
<td>0.896725</td>
</tr>
<tr>
<td>900</td>
<td>0.369800</td>
<td>0.329429</td>
<td>0.892947</td>
<td>0.893138</td>
<td>0.898281</td>
<td>0.892947</td>
</tr>
<tr>
<td>1000</td>
<td>0.273300</td>
<td>0.305412</td>
<td>0.910579</td>
<td>0.910355</td>
<td>0.910519</td>
<td>0.910579</td>
</tr>
<tr>
<td>1100</td>
<td>0.272800</td>
<td>0.388976</td>
<td>0.891688</td>
<td>0.893113</td>
<td>0.896606</td>
<td>0.891688</td>
</tr>
<tr>
<td>1200</td>
<td>0.259900</td>
<td>0.305771</td>
<td>0.913098</td>
<td>0.913123</td>
<td>0.913669</td>
<td>0.913098</td>
</tr>
<tr>
<td>1300</td>
<td>0.293500</td>
<td>0.317654</td>
<td>0.908060</td>
<td>0.908654</td>
<td>0.909939</td>
<td>0.908060</td>
</tr>
<tr>
<td>1400</td>
<td>0.255200</td>
<td>0.331161</td>
<td>0.915617</td>
<td>0.915708</td>
<td>0.916149</td>
<td>0.915617</td>
</tr>
<tr>
<td>1500</td>
<td>0.139800</td>
<td>0.352545</td>
<td>0.909320</td>
<td>0.909768</td>
<td>0.911014</td>
<td>0.909320</td>
</tr>
<tr>
<td>1600</td>
<td>0.194400</td>
<td>0.372482</td>
<td>0.904282</td>
<td>0.904296</td>
<td>0.906285</td>
<td>0.904282</td>
</tr>
<tr>
<td>1700</td>
<td>0.134200</td>
<td>0.340576</td>
<td>0.906801</td>
<td>0.907110</td>
<td>0.907780</td>
<td>0.906801</td>
</tr>
</table>
## Citation
```
@misc{Ardiyanto_Mikhael_2024,
author = {Mikhael Ardiyanto},
title = {Aardiiiiy/indobertweet-base-Indonesian-sentiment-analysis},
year = {2024},
URL = {https://huggingface.co/Aardiiiiy/indobertweet-base-Indonesian-sentiment-analysis},
publisher = {Hugging Face}
} |